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Field theory of bicritical and tetracritical points. IV. Critical dynamics including reversible terms
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This article concludes a series of papers [Folk, Holovatch, and Moser, Phys. Rev. E 78, 041124 (2008); 78,
041125 (2008); 79, 031109 (2009)] where the tools of the field theoretical renormalization group were employed
to explain and quantitatively describe different types of static and dynamic behavior in the vicinity of multicritical
points. Here we give the complete two-loop calculation and analysis of the dynamic renormalization-group flow
equations at the multicritical point in anisotropic antiferromagnets in an external magnetic field. We find that
the time scales of the order parameters characterizing the parallel and perpendicular ordering with respect to the
external field scale in the same way. This holds independent whether the Heisenberg fixed point or the biconical
fixed point in statics is the stable one. The nonasymptotic analysis of the dynamic flow equations shows that
due to cancellation effects the critical behavior is described, in distances from the critical point accessible to
experiments, by the critical behavior qualitatively found in one-loop order. Although one may conclude from
the effective dynamic exponents (taking almost their one-loop values) that weak scaling for the order parameter
components is valid, the flow of the time-scale ratios is quite different, and they do not reach their asymptotic
values.
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I. INTRODUCTION

Three-component antiferromagnets in three spatial dimen-
sions in an external magnetic field in z direction contain
in their phase diagram two second-order transition lines:
(1) between the paramagnetic and the spin flop phase and
(2) between the antiferromagnetic and paramagnetic phase.
The point where these two lines meet is a multicritical
point, which turned out to be either bicritical or tetracritical.
Within the renormalization group (RG) theory the stability
and attraction region of the static fixed point (FP) of the RG
transformation determines which kind of multicritical behavior
is realized. For the bicritical point it is the Heisenberg FP; for
the tetracritical point it is the biconical one. The stabilty of
a FP depends on the system’s global features as the space
and order parameter (OP) dimensions d and n. In d = 3, the
case considered here, the biconical FP is stable apart from a
restricted attraction region of the Heisenberg FP. The static
phase transition on each of the phase transition lines belongs
for (1) to an isotropic Heisenberg model with n⊥ = 2 and for
(2) to Heisenberg model with n‖ = 1 [1,2].

Concerning the dynamical universality classes the tran-
sition (1) belongs to the class described by model F, and
(2) belongs to the model C class (for the notation see Ref. [3]).
At the multicritical point the critical behavior is described by
a new universality class in both statics and dynamics. The
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interesting feature of these systems is that all the different
OPs characterizing the ordered phase are physically accessible.
This is most important for the dynamical behavior since the
only other example belonging to model F is the superfluid
transition in 4He where the OP (the complex macroscopic wave
function of the condensate [4]) is experimentally not accessible
[5]. Here the OPs are the components of the staggered
magnetization. Their correlations (static and dynamical) can
be measured by neutron scattering.

A complete description of the critical dynamics near the
multicritical point mentioned above has to take into account the
slow dynamical densities, which are the OPs and the conserved
densities present in the system. Due to the external magnetic
field the only conserved density that has to be taken into
account is the magnetization in the direction of the external
field. A derivation of the dynamical equations follows along the
usual steps calculating the reversible terms from the nonzero
Poisson brackets, introducing irreversible terms present also in
the hydrodynamic limit, dropping irrelevant terms and taking
into account terms arising in the renormalization procedure
(see, e.g., the review [3]). Such a dynamical model has already
been considered in Refs. [6–8] by RG theory, and it was
argued that due to nonanalytic terms in ε = 4 − d a FP in
two-loop order qualitative different from the one-loop FP is
found. The result of the one-loop calculations is that the time
scales of the parallel and perpendicular components of the
staggered magnetization scale differently, whereas calculated
in two-loop order they scale similar although the FP value of
the time-scale ratio of the two components cannot be found
by ε expansion and might be very small in d = 3, namely, of
O(10−86). It was argued that the terms leading to the singular
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TABLE I. Dynamical FP values (zeros of the corresponding
dynamical β functions) at d = 3 of different models for the time-scale
ratios w�

‖, w
′�
⊥, v′� and the mode coupling constant f �

⊥. The second and
third lines quote results of this paper found in the biconical static FP
for the tetracritical behavior of the dynamical model that takes into
account reversible terms. They are compared with the two-loop results
found in the model C multicritical point [11] as well as in the critical
points of model C for the one component OP [9] and of model F for
the two-component order parameter [10].

FP values in w�
‖ w′�

⊥ v′� f �
⊥

BC [11] 0.76 �1 ∼0 −
B one-loop 0 1.555 0 1.086
B two-loop 0 0 ∼0 1.131
Model C [9] 0.49 − − −
Model F [10] − 0 − 0.834

behavior in ε do not contribute to the FP value of the mode
coupling. The calculations of the RG functions in Ref. [6] were
not complete in two-loop order (they took into account only
the terms that lead to the nonanalytic behavior in ε). At that
time also the Heisenberg FP (named H) was considered to be
the stable static one, whereas it turned out in two-loop order
(resummed) that it is the biconical FP (named B) [2].

A summary of the results obtained so far for the FPs char-
acterizing dynamical behavior is given in Table I. Neglecting
the reversible terms one is left with a purely relaxational
dynamics. Then the asymptotic dynamical critical behavior
is characterized by the FP values of the independent time-
scale ratios of the system. These are the time-scale ratios:
(1) the ratio w‖ between the relaxation rate of the staggered
magnetization parallel to the external field and the diffusive
transport coefficient of the magnetization parallel to the
external field; (2) the ratio w′

⊥ between the real part of the
relaxation rate of the staggered magnetization perpendicular
to the external field and the diffusive transport coefficient of
the magnetization parallel to the external field. In addition
we introduce the ratio v′ between the two components of
the real relaxation rates of the two OPs in order to compare
their dynamic scaling behavior. A nonzero finite value of the
time-scale ratio means that the two involved densities scale
with the same exponent. If all time-scale ratios are nonzero
and finite, one speaks of strong dynamic scaling, otherwise of
weak dynamic scaling. Especially of interest is the behavior
of the scaling of the two components of the OP indicated by
the FP value of v′. In the third line of Table I the two-loop
order result shows weak dynamic scaling between the OPs
and the conserved density but strong scaling between the OP
components. However, since the FP value of the time-scale
ratio v′ is almost zero, the critical behavior is dominated by
nonasymptotic effects. For comparison the FP values for the
case of model C for the one-component OP [9] and for model F
for the two-component order parameter [10] are included. They
are the limiting cases when the two OPs characterizing the
multicritical behavior would decouple in statics and dynamics.

In the first line of Table I the results for the multicritical
dynamical FP BC are displayed (see Ref. [11]), which take
into account the static coupling of the OP to the conserved
density. All time-scale ratios are nonzero and finite, but since

w′�
⊥ is very large (v′� almost zero) the observable behavior

in the vicinity of the multicritical point is predicted to be
dominated by nonasymptotic effects, and strong scaling is not
observable [11]. In the second line the results of a one-loop RG
calculation with reversible terms for the biconical FP are given.
The FP value of the mode coupling parameter f⊥ is finite, but
since w�

‖ = 0 the critical dynamics is characterized by weak
dynamic scaling, and the two components of the OP scale
different. A similar result for the Heisenberg FP was found
in Ref. [6]. In the third line the results found in this paper are
shown, indicating weak scaling between the conserved density
and the components of the OP, but strong scaling between the
parallel and perpendicular components of the OP. Since the
FP value of the time-scale ratio between the component v′� is
almost zero but definitively different from zero, it is expected
that nonasymptotic behavior is dominant.

This article concludes a series of papers [2,11,12] (hence-
forth cited as papers I, III, and II) where the tools of the
field theoretical RG [13] were employed to explain and
quantitatively describe different types of static and dynamic
behavior in the vicinity of multicritical points. A short account
of the results presented here was given in Ref. [14]. The statics
and dynamics were treated in Refs. [2,11,12], respectively.
First, purely relaxational dynamics was considered (paper II),
and later, in paper III, these results served as a basis
to consider how an account of magnetization conservation
modifies dynamical behavior. The goal of the current study is
more ambitious: We will analyze a complete set of dynamical
equations of motion taking into account reversible terms
[15,16] and give a comprehensive description of dynamical
behavior in the vicinity of multicritical points in two-loop
order. The paper is organized as follows: In Sec. II the dynamic
model is defined followed by the definitions of the dynamical
functions considered in Sec. III. The renormalization and
corresponding RG functions are presented in Secs. IV and
V, respectively. The two-loop results of our calculations for
these dynamic RG functions are given in Sec. VI. The one-loop
approximation for the dynamic is discussed in Sec. VII. In the
Sec. VIII we consider the asymptotic properties of the two-loop
RG functions leading to the general asymptotic results in
Sec. IX. We then present the results expected in the asymptotic
subspace in Sec. X. The nonasymptotic behavior, obtained by
looking at the region farther away from the multicritical point,
is shown in Sec. XI, and a conclusion (Sec. XII) ends the paper.
In appendices calculational details for some intermediate steps
of the RG calculation are presented.

II. MODEL EQUATIONS OF THE ANTIFERROMAGNET
IN AN EXTERNAL FIELD

The nonconserved OP �φ0 of an isotropic antiferromagnet is
given by the three-dimensional vector

�φ0 =

⎛
⎜⎝

φx
0

φ
y

0

φz
0

⎞
⎟⎠ (1)

of the staggered magnetization, which is the difference of two
sublattice magnetizations. An external magnetic field applied
to the ferromagnet induces an anisotropy to the system. The
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OP splits into two OPs, �φ⊥0 perpendicular to the field, and �φ‖0

parallel to the external field. Assuming the z axis in direction
of the external magnetic field, the two OPs are

�φ⊥0 =
(

φx
0

φ
y

0

)
, φ‖0 = φz

0. (2)

In addition the z component of the magnetization m0 has to
be taken into account for the dynamics and therefore has to
be included in statics, although there it could be integrated out
and does not change the asymptotic static critical behavior.
Thus the static critical behavior of the system is described by
the functional

H =
∫

ddx

{
1

2
˚̃r⊥ �φ⊥0 · �φ⊥0 + 1

2

d∑
i=1

(∇i
�φ⊥0) · (∇i

�φ⊥0)

+ 1

2
˚̃r‖φ‖0φ‖0 + 1

2

d∑
i=1

(∇iφ‖0)(∇iφ‖0) +
˚̃u⊥
4!

( �φ⊥0 · �φ⊥0)2

+
˚̃u‖
4!

(φ‖0φ‖0)2 + 2 ˚̃u×
4!

( �φ⊥0 · �φ⊥0)(φ‖0φ‖0)

+ 1

2
m2

0 + 1

2
γ̊⊥m0 �φ⊥0 · �φ⊥0 + 1

2
γ̊‖m0φ‖0φ‖0 − h̊m0

}
,

(3)

with familiar notations for bare couplings { ˚̃u,γ̊ }, masses { ˚̃r},
and field h̊ [2,12]. The critical dynamics of relaxing OPs
coupled to a diffusing secondary density is governed by the
following equations of motion [6]:

∂φα
⊥0

∂t
= −	̊′

⊥
δH

δφα
⊥0

+ 	̊′′
⊥εαβz δH

δφ
β

⊥0

+ g̊ εαβzφ
β

⊥0

δH
δm0

+ θα
φ⊥ ,

(4)
∂φ‖0

∂t
= −	̊‖

δH
δφ‖0

+ θφ‖ , (5)

∂m0

∂t
= λ̊∇2 δH

δm0
+ g̊ εαβzφα

⊥0
δH

δφ
β

⊥0

+ θm, (6)

with the Levi-Civita symbol εαβz. Here α,β = x,y, and the
sum over repeated indices is implied.

The dynamical equations describe the dynamics of an
antiferromagnet with the usual Lamor precession terms for
the alternating magnetization and relaxational terms. Due to
the static coupling to the conserved magnetization, additional
Lamor terms arise together with a diffusive term for the
magnetization. Renormalization considerations on the one
hand lead to a neglecting of several Lamor terms and on the
other hand create an additional reversible term (the second
term on the right-hand side of Eq. (4)) not present in the usual
dynamics of antiferromagnets [17].

Combining the kinetic coefficients of the OP to a complex
quantity, 	̊⊥ = 	̊′

⊥ + i	̊′′
⊥, the imaginary part constitutes a

precession term created by the renormalization procedure even
if it is absent in the background. The kinetic coefficient λ̊ and
the mode coupling g̊ are real. The stochastic forces �θφ⊥ , �θφ‖ ,

and θm fulfill Einstein relations:〈
θα
φ⊥ (�x,t) θ

β

φ⊥ (�x ′,t ′)
〉 = 2	̊′

⊥δ(�x − �x ′)δ(t − t ′)δαβ, (7)

〈θφ‖ (�x,t) θφ‖ (�x ′,t ′)〉 = 2	̊‖δ(�x − �x ′)δ(t − t ′), (8)

〈θm(�x,t) θm(�x ′,t ′)〉 = −2λ̊∇2δ(�x − �x ′)δ(t − t ′) . (9)

In view of dynamical calculations it is more convenient to
deal with a scalar complex order parameter ψ0 = ψ ′

0 + iψ ′′
0

instead of the real two-dimensional OP �φ⊥0 in Eq. (2). Thus
we introduce

ψ0 = φx
0 − iφy

0 , ψ+
0 = φx

0 + iφy

0 (10)

as OPs of the perpendicular components. The superscript +
denotes complex conjugated quantities also in the following
equations.

Expressed in terms of the complex OP the dynamic
Eqs. (4)–(6) take the form

∂ψ0

∂t
= −2	̊⊥

δH

δψ+
0

+ iψ0g̊
δH

δm0
+ θψ, (11)

∂ψ+
0

∂t
= −2	̊+

⊥
δH

δψ0
− iψ+

0 g̊
δH

δm0
+ θ+

ψ , (12)

∂φ‖0

∂t
= −	̊‖

δH

δφ‖0
+ θφ‖ , (13)

∂m0

∂t
= λ̊∇2 δH

δm0
− 2g̊ Im(ψ+

0 ∇2ψ0) + θm. (14)

Due to the fact that the stochastic forces θα
φ⊥ in Eq. (4) are δ

correlated and fulfill the Einstein relations, similar properties
hold also for the stochastic forces θψ :

〈θψ (x,t) θ+
ψ (x ′,t ′)〉 = 4	̊′

⊥ δ(x − x ′)δ(t − t ′). (15)

The critical behavior of the thermodynamic derivatives follows
from the extended static functional (3) written in the densities
introduced in Eq. (10). Then one has

H = H(0) + H(int) (16)

with a Gaussian part

H(0) =
∫

ddx

{
1

2
˚̃r⊥ψ+

0 ψ0 + 1

2

d∑
i=1

(∇iψ
+
0 )(∇iψ0)

+ 1

2
˚̃r‖φ2

‖0 + 1

2

d∑
i=1

(∇iφ‖0)(∇iφ‖0) + 1

2
m2

0 − h̊m0

}
,

(17)

and an interaction part

H(int) =
∫

ddx

{ ˚̃u⊥
4!

(ψ+
0 ψ0)2 +

˚̃u‖
4!

φ4
‖0 + 2 ˚̃u×

4!
ψ+

0 ψ0φ
2
‖0

+ 1

2
γ̊⊥m0ψ

+
0 ψ0 + 1

2
γ̊‖m0φ

2
‖0

}
. (18)

The above static functional may be reduced to the Ginzburg-
Landau-Wilson (GLW) functional with complex OP by con-
sidering an appropriate Boltzmann distribution and integrating
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out the secondary density. One obtains

HGLW =
∫

ddx

{
1

2
r̊⊥ψ+

0 ψ0 + 1

2

d∑
i=1

(∇iψ
+
0 )(∇iψ0)

+ 1

2
r̊‖φ2

‖0 + 1

2

d∑
i=1

(∇iφ‖0)(∇iφ‖0) + ů⊥
4!

(ψ+
0 ψ0)2

+ ů‖
4!

φ4
‖0 + 2ů×

4!
ψ+

0 ψ0φ
2
‖0

}
. (19)

The parameters {r̊} ≡ r̊⊥,r̊‖ and {ů} ≡ ů⊥,ů‖,ů× in Eq. (19)
are related to the corresponding parameters of the extended
static functional (16) by

r̊⊥ = ˚̃r⊥ + γ̊⊥h̊, ů⊥ = ˚̃u⊥ − 3γ̊ 2
⊥, (20)

r̊‖ = ˚̃r‖ + γ̊‖h̊, ů‖ = ˚̃u‖ − 3γ̊ 2
‖ , (21)

ů× = ˚̃u× − 3γ̊⊥γ̊‖ . (22)

The property that the static critical behavior does not depend
on the secondary densities, which can be integrated out in
Eq. (16), leads to relations between the correlation functions
of the secondary densities and the OP correlation functions.
These relations and their derivations have been extensively
discussed in paper III with real OP functions �φ⊥0 and φ‖0.
Because the derivation of the relations is independent of the
type of OP (real or complex), all of the relations remain valid
and can be taken over from paper III. Therefore we will not
repeat them here.

III. DYNAMIC CORRELATION AND VERTEX FUNCTIONS

The Fourier transformed dynamic correlation functions of
the two OPs are usually introduced as

C̊ψψ+({ξ},k,ω) =
∫

ddx

∫
dte−ikx+iωt 〈ψ0(x,t)ψ+

0 (0,0)〉c,
(23)

C̊φ‖φ‖({ξ},k,ω) =
∫

ddx

∫
dte−ikx+iωt 〈φ‖0(x,t)φ‖0(0,0)〉c.

(24)

All functions depend on the two correlation lengths ξ⊥ and ξ‖,
which is indicated by {ξ} in a short notation. 〈AB〉c = 〈AB〉 −
〈A〉〈B〉 denotes the cumulant. The averages are calculated with
a propability density including a dynamic functional, which
can be constituted from the dynamic equations (11)–(14). In
the considered approach of Ref. [18] for every density auxiliary
densities are introduced accordingly. They are denoted as ψ̃+

0 ,
ψ̃0, φ̃‖0, and m̃0. The dynamic correlation functions of the
order parameters are connected to dynamic vertex functions
via

C̊ψψ+({ξ},k,ω) = − 	̊ψ̃ψ̃+({ξ},k,ω)

|	̊ψψ̃+({ξ},k,ω)|2 , (25)

C̊φ‖φ‖({ξ},k,ω) = − 	̊φ̃‖φ̃‖ ({ξ},k,ω)

|	̊φ‖φ̃‖({ξ},k,ω)|2 , (26)

where the two-point vertex functions appearing on the right-
hand side in the above expression have to be calculated within
perturbation expansion. They are obtained by collecting all

one-particle irreducible Feynman graphs with corresponding
external legs. A closer examination of the loop expansion
reveals [19] that the dynamic response vertex functions 	̊ψψ̃+

and 	̊φ‖φ̃‖ have the general structure

	̊ψψ̃+({ξ},k,ω) = −iω�̊ψψ̃+({ξ},k,ω)

+ 	̊ψψ+({ξ},k)	̊(d)
ψψ̃+({ξ},k,ω), (27)

	̊φ‖φ̃‖({ξ},k,ω) = −iω�̊φ‖φ̃‖({ξ},k,ω)+	̊φ‖φ‖ ({ξ},k)	̊‖, (28)

where 	̊ψψ+({ξ},k) and 	̊φ‖φ‖({ξ},k) are the well-known static
two-point vertex functions of the bicritical GLW model with a
complex OP. We want to remark that the static vertex functions
in Eqs. (27) and (28) are related by

	̊ψψ+({ξ},k) = 1
2 	̊

(2,0)
⊥⊥ ({ξ},k) (29)

and

	̊φ‖φ‖({ξ},k) = 	̊
(2,0)
‖‖ ({ξ},k) (30)

to the static vertex functions introduced in papers I–III for the
model with real OPs. Thus the correlation lengths ξ⊥ and ξ‖
are now determined by

ξ 2
⊥({r̊},{ů}) = ∂ ln 	̊ψψ+(k,{r̊},{ů})

∂k2

∣∣∣∣
k=0

, (31)

ξ 2
‖ ({r̊},{ů}) = ∂ ln 	̊φ‖φ‖(k,{r̊},{ů})

∂k2

∣∣∣∣
k=0

. (32)

�̊ψψ̃+ , 	̊
(d)
ψψ̃+ , and �̊φ‖φ̃‖ are purely dynamic functions. The

explicit expressions of these functions are given in
Appendix A, Eqs. (A1)–(A3). They determine also the
dynamic vertex functions 	̊ψ̃ψ̃+ and 	̊φ̃‖φ̃‖ in Eqs. (25) and
(26). A proper rearrangement of the perturbative contributions
shows that the relations

	̊ψ̃ψ̃+({ξ},k,ω) = −2 Re
[
�̊ψψ̃+({ξ},k,ω)	̊(d)

ψψ̃+({ξ},k,ω)
]
,

(33)

	̊φ̃‖φ̃‖({ξ},k,ω) = −2	‖ Re[�̊φ‖φ̃‖ ({ξ},k,ω)] (34)

hold. Re[·] is the real part of the expression in the brackets.
Analogous to (23) and (24) the Fourier transformed

dynamic correlation function of the secondary density is
introduced as

C̊mm({ξ},k,ω) =
∫

ddx

∫
dte−ikx+iωt 〈m0(x,t)m0(0,0)〉c (35)

The connection to the dynamic vertex functions is analogous
to the case of the OP [Eqs. (25) and (26)]:

C̊mm({ξ},k,ω) = − 	̊m̃m̃({ξ},k,ω)

|	̊mm̃({ξ},k,ω)|2 . (36)

The dynamic response vertex function of the secondary density
has the general structure

	̊mm̃({ξ},k,ω) = −iω�̊mm̃({ξ},k,ω)

+ 	̊mm({ξ},k)	̊(d)
mm̃({ξ},k,ω), (37)
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where 	̊mm({ξ},k) is the static two-point vertex function cal-
culated with the extended static functional (16), which already
has been introduced in paper III. A relation corresponding
to (33) holds also for the dynamic vertex function of the
secondary density. We have

	̊m̃m̃({ξ},k,ω) = −2 Re
[
�̊mm̃({ξ},k,ω)	̊(d)

mm̃({ξ},k,ω)
]
. (38)

IV. RENORMALIZATION

A. Static renormalization

The renormalization of the GLW functional (19) has been
extensively discussed in paper I. The only difference in the
present paper is that we now have to renormalize the complex
OP ψ0 instead of the real vector OP �φ⊥0. We introduce the
following renormalization factor

ψ0 = Z
1/2
ψ ψ, ψ+

0 = Z
1/2
ψ ψ+, (39)

where Zψ is a real quantity and identical to Zφ⊥ in paper I
taken at n⊥ = 2 and n‖ = 1. This means

Zψ = Zφ⊥

∣∣
n⊥=2
n‖=1

. (40)

The renormalization of the parameters r̊⊥, r̊‖ and the couplings
ů⊥, ů‖, ů× appearing in Eq. (19) is given in paper I [see
Eqs. (16), (17), and (5)–(7)]. In all relations one has to
replace Zφ⊥ by Zψ . All renormalization factors remain valid
if one sets n⊥ = 2 and n‖ = 1. This is also true for the Z

matrix Zφ2 introduced in Eq. (10) of paper I and the additive
renormalization A({u}) defined in Eq. (15) of paper I.

The renormalization of the parameters in the extended static
functional (16) has been presented in paper III. As in the case
of the bicritical GLW model all Z factors and relations between
them remain valid if Zφ⊥ therein is replaced by Zψ , and if one
sets n⊥ = 2 and n‖ = 1 in explicit expressions.

B. Dynamic renormalization

Within dynamics auxiliary densities ψ̃0, φ̃‖0, and m̃0

corresponding to the two OPs and the secondary density
are introduced [18]. Instead of renormalization conditions we
use the minimal subtraction scheme [20] as in the preceding
papers II and III. The auxiliary density of the complex OP
is multiplicatively renormalizable by introducing complex Z

factors:

ψ̃0 = Z
1/2
ψ̃

ψ̃, ψ̃+
0 = Z

1/2
ψ̃+ ψ̃+. (41)

The complex renormalization factors in (41) fulfill the relation
Zψ̃+ = Z+

ψ̃
. For the auxiliary densities of the single-component

real OP and the secondary density the corresponding renormal-
ization factors are introduced:

φ̃‖0 = Z
1/2
φ̃‖

φ̃‖, m̃0 = Zm̃m̃, (42)

where Zφ̃‖ and Zm̃ are real. Within the minimal subtraction
scheme the Z factors of the auxiliary densities of the
nonconserved OPs Zψ̃+ and Zφ̃‖ are determined by the ε poles

of the functions �̊ψψ̃+ and �̊φ‖φ̃‖ introduced in Eqs. (27) and
(28). The corresponding function of the conserved secondary

density �̊mm̃ in Eq. (37) does not contain new poles. Therefore
one has

Zm̃ = Z−1
m , (43)

where Zm has been introduced in Eq. (30) in paper III.
The kinetic coefficients renormalize as

	̊⊥ = Z	⊥	⊥, 	̊‖ = Z	‖	‖, λ̊ = Zλλ. (44)

The renormalization of the complex kinetic coefficient 	⊥
in Eq. (44) leads to a complex Z	⊥ , while the other two
renormalization factors in Eq. (44) are real valued. Z	⊥ can be
separated into

Z	⊥ = Z
1/2
ψ Z

−1/2
ψ̃+ Z

(d)
	⊥ , (45)

where Z
(d)
	⊥ contains the singular contributions of the dynamic

function 	̊
(d)
ψψ̃+ , appearing in Eq. (27).

The dynamic equation (13) for the OP φ‖ contains no mode
coupling term. As a consequence only the kinetic coefficient
	̊‖ appears in the dynamic vertex function (28) instead of a
function 	̊

(d)
φ‖φ̃‖

. Therefore Z
(d)
	‖ = 1, and we can write

Z	‖ = Z
1/2
φ‖ Z

−1/2
φ̃‖

. (46)

Using Eq. (43) the kinetic coefficient of the secondary density
renormalizes as

Zλ = Z2
mZ

(d)
λ , (47)

where Z
(d)
λ contains only the poles of the k2 derivative of 	̊

(d)
mm̃

taken at zero frequency and wave vector modulus.
The mode coupling coefficient needs no independent

renormalization, so we simply have

g̊ = κε/2ZmgA
−1/2
d . (48)

The geometric factor Ad [21] already used in the static
renormalization has been given in paper I [Eq. (8)].

V. RENORMALIZATION GROUP FUNCTIONS

In order to obtain the temperature dependence of the model
parameters, as well as the asymptotic dynamic exponents, the
RG functions, which are usually denoted as ζ and β functions,
have to be introduced.

A. General definitions

In order to simplify the general handling of the RG functions
we will use the uniform definition

ζai
({αj }) = d ln Z−1

ai
({αj })

d ln κ
(49)

for all ζ functions in statics and dynamics. The derivative
is taken at fixed bare parameters. {αj } denotes the set of
static and dynamic model parameters, which include the static
couplings {u} and {γ }, the mode coupling g, and all kinetic
coefficients 	⊥,	+

⊥,	‖,λ. The ζ function ζai
is calculated

from the renormalization factor Zai
introduced in the previous

section. Thus ai may denote a model parameter from the set
{αj }, a density ψ , φ‖, m, or a composite operator ψ2, φ2

‖ . The
approach of the model parameters αi(l) to their FP values in
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the vicinity of the multicritical point is determined by the flow
equations with the flow parameter l

l
dαi(l)

dl
= βαi

({αj (l)}) (50)

with β functions

βαi
({αj (l)}) = αi(l)[−ci + ζαi

({αj (l)})]; (51)

ci is the naive dimension of the corresponding parameter αi

obtained by power counting. For the static couplings u⊥, u×,
or u‖ the naive dimension ci is equal to ε, while for γ⊥ or γ‖
and the mode coupling g it is ε/2, respectively. All kinetic
coefficients, these are 	⊥, 	+

⊥ , 	‖, and λ, are dimensionless
quantities, which means ci = 0.

The flow equations (50) have fixed points at the zeros of
the β functions. The FP values of the model parameters {α�

j }
are defined by the equations

βαi
({α�

j }) = 0. (52)

The FP is stable if all eigenvalues of the matrix ∂βαi
/∂αk

are positive or possesses positive real parts. Starting at values
{αj (l0)} at an initial flow parameter value l0, the flow equations
can be solved numerically. The asymptotic critical values of
the parameters are obtained in the limit l → 0. If a stable FP
is present, the flow of the parameters has the property

lim
l→0

{αj (l)} = {α�
j }. (53)

A set of FP values {α�
j } determines all static and dynamic

exponents. The static relations between ζ functions and critical
exponents have been extensively discussed in papers I and III.
The dynamic exponents are related by

zφ⊥ = 2 + ζ �
	′

⊥
, zφ‖ = 2 + ζ �

	‖ , zm = 2 + ζ �
λ (54)

to the dynamic ζ functions (see Ref. [3]). In Eq. (54) the
short notation ζ �

αi
≡ ζαi

({α�
j }) has been introduced. In the

nonasymptotic background region effective dynamic expo-
nents are defined as

z
(eff)
⊥ (l) = 2 + ζ	′

⊥ ({αj (l)}), (55)

z
(eff)
‖ (l) = 2 + ζ	‖ ({αj (l)), (56)

z(eff)
m (l) = 2 + ζλ({αj (l)), (57)

where the flow of the parameters is inserted into the ζ functions
instead of the FP values. The effective exponents depend on the
flow parameter, or reduced temperature accordingly. Relation
(53) makes sure that the effective exponents turn into the
asymptotic exponents in the critical limit, that is,

lim
l→0

z
(eff)
k (l) = zφk

lim
l→0

z(eff)
m (l) = zm

with k =⊥ ,‖. (58)

B. Time-scale ratios and mode-coupling parameters

It is convenient to introduce ratios of the kinetic coefficients
or mode couplings, which may have finite FP values. The
following ratios will be used in the subsequent sections:

(1) The time-scale ratios between the order parameters and
the secondary density

w⊥ ≡ 	⊥
λ

, w‖ ≡ 	‖
λ

. (59)

From this we also define the ratio between kinetic coefficients
of the two order parameters

v ≡ 	‖
	⊥

= w‖
w⊥

, (60)

which already previously has been used in the bicritical
model A and model C. Note that in contrast to the two
models mentioned, w⊥ and v are now complex quantities.
The ratios in Eqs. (59) and (60) are of course not independent
as shown by the equality in Eq. (60). The structure of the
dynamic ζ functions presented subsequently further implies
the introduction of the complex ratio

v⊥ ≡ 	⊥
	+

⊥
= w⊥

w+
⊥

= v+

v
. (61)

(2) The mode coupling parameter

F ≡ g

λ
(62)

does not necessarily have a finite FP value. Thus it may be
more appropriate to use the ratio

f⊥ ≡ g√
	′

⊥λ
= F√

w′
⊥

(63)

in several cases, especially in the discussion of the flow
equations and the fixed points.

The flow equations for the ratios defined above can be
found from the ζ and β functions introduced in the previous
subsection. From the definition of the parameters in Eqs. (59)
and (63) and the renormalization (44) and (48) we obtain
together with (49) the flow equations

l
dw⊥
dl

= w⊥(ζ	⊥ − ζλ), (64)

l
dw‖
dl

= w‖(ζ	‖ − ζλ), (65)

l
df⊥
dl

= −f⊥
2

(
ε + ζλ − 2ζm + Re

[
w⊥
w′

⊥
ζ	⊥

])
. (66)

From (64) and (65) follows immediately the flow equation for
the ratio

l
dv

dl
= v(ζ	‖ − ζ	⊥ ), (67)

which has been defined in Eq. (60).
The remaining task is to calculate the explicit expressions

of the dynamic functions ζ	⊥ , ζ	‖ , and ζλ in two-loop order.

VI. DYNAMIC RG FUNCTIONS IN TWO-LOOP ORDER

The perturbation expansion of the dynamic vertex functions
and the structures therein are outlined in detail in Appendix A.
The resulting expressions for the dynamic renormalization
factors in two-loop order are presented in Appendix B. With
these expressions at hand we are in the position to obtain
explicit two-loop expressions for the RG ζ functions.
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A. Dynamic ζ functions of the OPs

Relations (45) and (46) between the Z factors imply the
relations between the corresponding ζ functions:

ζ	⊥ = ζ
(d)
	⊥ − 1

2ζψ̃+ + 1
2ζψ, (68)

ζ	‖ = − 1
2ζφ̃‖ + 1

2ζφ‖ . (69)

The static ζ functions ζψ = ζφ⊥ have been presented in
Eqs. (20) in paper I. Inserting (B1) and (B2) into (49) and (68)
we obtain the dynamic ζ function for the kinetic coefficient of
the perpendicular components as

ζ	⊥ = D2
⊥

w⊥(1 + w⊥)
− 2

3

u⊥D⊥
w⊥(1 + w⊥)

A⊥

− 1

2

D2
⊥

w2
⊥(1 + w⊥)2

B⊥

− 1

2

γ‖D⊥
1 + w⊥

(
u×
3

+ 1

2

γ‖D⊥
1 + w⊥

)
X⊥

+ ζ
(A)
	⊥ ({u},v⊥,v), (70)

where we have introduced the coupling

D⊥ ≡ w⊥γ⊥ − iF. (71)

The functions A⊥, B⊥, and X⊥ are defined as

A⊥ ≡ w⊥γ⊥(1 − x1L1) + iFx−x1L1 − D⊥L0, (72)

B⊥ ≡ w2
⊥γ 2

⊥(1 − 2x1L1) + F 2(2x−L1 + LR)

+ 2w⊥γ⊥iF (1 + 2x−x1L1) − 2L0D
2
⊥

− D2
⊥

1 + w⊥

[
w⊥ + (1 + 2w⊥) ln

(1 + w⊥)2

1 + 2w⊥

]
, (73)

X⊥ ≡ 1 + ln
2v

1 + v
−

(
1 + 2

v

)
ln

2(1 + v)

2 + v
(74)

with

LR ≡ [x+ + v⊥ + x2
+(x2

+ + 2v2
⊥)]

L1

x+
− 3v⊥. (75)

We have used the following definitions in the above expres-
sions:

x± ≡ 1 ± v⊥, x1 ≡ 2 + v⊥, (76)

L0 ≡ 2 ln
2

1 + 1
v⊥

, L1 ≡ ln

(
1 + 1

v⊥

)2

1 + 2 1
v⊥

. (77)

ζ
(A)
	⊥ ({u},v⊥,v) is the ζ function of the kinetic coefficient of the

perpendicular components in the bicritical model A, but now
with a complex kinetic coefficient 	⊥. It reads in two-loop
order

ζ
(A)
	⊥ ({u},v⊥,v) = u2

⊥
9

(
L0 + x1L1 − 1

2

)
+ u2

×
36

(
L

(×)
⊥ − 1

2

)
(78)

with

L
(×)
⊥ ≡ ln

(1 + v)2

v(2 + v)
+ 2

v
ln

2(1 + v)

2 + v
. (79)

The dynamic ζ function of the parallel component is obtained
by inserting Eq. (21) of paper I and (B3) into (49) and (69).
The result is

ζ	‖ = w‖γ 2
‖

1 + w‖
− 1

2

w‖γ‖
1 + w‖

{
u‖γ‖

(
1 − 3 ln

4

3

)
+ w‖γ 3

‖
1 + w‖

[
1

2

(
1 − 9 ln

4

3

)
− w‖

1 + w‖
− 1 + 2w‖

1 + w‖
ln

(1 + w‖)2

1 + 2w‖

]

+
(

2

3
u×+ w‖γ‖

1+w‖
γ⊥

)
Re

[
T1

w′
⊥

]
− γ‖F

2w′
⊥(1+w‖)

Im

[
T2

w′
⊥

]}
+ ζ

(A)
	‖ ({u},v⊥,v). (80)

The functions T1 and T2 are defined as

T1 ≡ D⊥

{
1 + ln

1 + 1
v⊥

1 + v

−
[
v+ 1

v⊥
(1+v)

]
ln

(1+v)
(
1+ 1

v⊥

)
v+ 1

v⊥
(1+v)

}
, (81)

T2 ≡ w+
⊥D⊥

{
(1 + v⊥)v − ln

1 + 1
v⊥

1 + v

−
[
v+ 1

v⊥
(1+v)

]
[v+v⊥(1+v)] ln

(1+v)
(
1+ 1

v⊥

)
v+ 1

v⊥
(1+v)

}
,

(82)

ζ
(A)
	‖ ({u},v⊥,v) is the ζ function of the kinetic coefficient of the

parallel component in the bicritical model A. With a complex
	⊥ it reads

ζ
(A)
	‖ ({u},v⊥,v) = u2

‖
4

(
ln

4

3
− 1

6

)
+ u2

×
18

(
L

(×)
‖ − 1

2

)
(83)

with

L
(×)
‖ ≡ ln

(1+v)
(

1
v⊥

+v
)

v+ 1
v⊥

(1+v)
+ vv⊥ ln

(
1+ 1

v⊥

)(
1
v⊥

+v
)

v+ 1
v⊥

(1+v)

+ v ln

(
1+ 1

v⊥

)
(1+v)

v+ 1
v⊥

(1+v)
. (84)
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B. Dynamic ζ functions of the secondary density

With relation (47) we can separate the static contributions
to the ζ function ζλ. Thus we have

ζλ = 2ζm + ζ
(d)
λ . (85)

By separating the static from the dynamic parts in the ζ

functions one can take advantage of the general structures
appearing in the purely dynamic ζ function ζ

(d)
λ as well as

in the static ζ function ζm. Inserting n⊥ = 2 and n‖ = 1 into
relation (40) in paper III ζm can be written as

ζm = 1
2γ 2

⊥ + 1
4γ 2

‖ , (86)

which is valid up to two-loop order. From the diagrammatic
structure of the dynamic perturbation theory follows

ζ
(d)
λ = −f 2

⊥
2

(1 + Q). (87)

The real function Q contains all higher-order contributions
beginning with two-loop order. Setting Q = 0 in Eq. (87)
reproduces the one-loop expressions of this function. The
function Q in the dynamic ζ function of the secondary density
(87) has the structure

Q = 1
2 Re[X2] (88)

from which immediately follows that it is a real quantity. X2

reads

X2 = D⊥
w′

⊥(1 + w⊥)

[
D⊥

(
1

2
+ ln

1 + w⊥
1 + w+

⊥

)

+D+
⊥(1 + w⊥) − (W (m)

⊥ γ⊥ + w⊥iF )W (m)
⊥ L

(m)
⊥

]
, (89)

where we have introduced the definitions

L
(m)
⊥ = ln

(
1 + 1

W
(m)
⊥

)
, (90)

W
(m)
⊥ = w⊥ + w+

⊥ + w⊥w+
⊥. (91)

Note that X2 coincides with the corresponding function in
model F in Refs. [3,22].

VII. CRITICAL BEHAVIOR IN ONE-LOOP ORDER

Although the one-loop critical behavior of the considered
system has already been discussed in Ref. [6] we want
to summarize the results in order to compare it with the
considerably differing results of the two-loop calculation. In
one-loop order the ζ functions (70), (80), and (87) reduce to

ζ	⊥ = D2
⊥

w⊥(1 + w⊥)
, ζ	‖ = w‖γ 2

‖
1 + w‖

, ζ
(d)
λ = −f 2

⊥
2

. (92)

Inserting (92) into the right-hand sides of (64)–(66) leads to a
set of equations in which the zeros determine the dynamical
FPs. The only stable FP is found for w�

‖ = 0 and w′�
⊥, w′′�

⊥ , and
f �

⊥ finite. The corresponding values are presented in Table II.
As a consequence we have v� = 0. We note that the static FP
values of the two-loop calculation in papers I and III have
been used. We were interested in the nonasymptotic properties
described by flow equations, and since no real FP in statics
is reached in two-loop order, we had to resume the static β

functions in order to get real FP values [2]. To each type
of static FP (biconical or Heisenberg) two equivalent static
fixed points exist, differing in the signs of γ⊥ and γ‖ [11].
Accordingly four equivalent dynamic fixed points exist with
different signs in w′′

⊥ and f⊥. They correspond to the directions
of the external fields of the parallel and perpendicular OP.

The finite value of w�
⊥ implies the relations

ζ ′�
	⊥ = ζ �

λ , ζ ′′�
	⊥ = 0, ε + ζ ′�

	⊥ + ζ �
λ − 2ζ �

m = 0, (93)

which follow from (64) and (66). The vanishing w�
‖ leads to

ζ �
	‖ = 0 as can immediately be seen from (92). Using the first

relation in Eq. (93) and the third one, we obtain

ζ ′�
	⊥ = ζ �

λ = 1
2 (2ζ �

m − ε). (94)

Inserting the FP value of the static ζ function ζ �
m [see

relation (105) in paper III]

ζ �
m = φ

ν
− d

2
(95)

into the above equation, one has

ζ ′�
	⊥ = ζ �

λ = φ

ν
− 2. (96)

The dynamic critical exponents (54) in one-loop order
are therefore completely expressed in terms of the static

TABLE II. FP values of couplings and time-scale ratios for n‖ = 1, n⊥ = 2 at d = 3. B indicates the biconical, H the Heisenberg FP.
There are always two equivalent static FPs depending on the signs of the couplings γ . The FP values of the static couplings {u} and {γ } are
taken from the resummed two-loop results [2], whereas w�

⊥ and f �
⊥ are calculated from the one-loop β functions. w�

‖ = v� = 0 is valid in all
cases. Corresponding to the two equivalent cases in statics and the sign of w′′�

⊥ there are equivalent dynamic FPs with corresponding signs of
the FP value of the mode coupling f �

⊥.

FP u�
‖ u�

⊥ u�
× γ �

‖ γ⊥� w′�
⊥ w′′�

⊥ f �
⊥

B 1.28745 1.12769 0.30129 0.54201 −0.17806 1.55489 ∓0.41958 ±1.08563
B 1.28745 1.12769 0.30129 −0.54201 0.17806 1.55489 ±0.41958 ±1.08563
H 1.00156 1.00156 1.00156 0.85179 −0.42590 1.58136 ∓1.38256 ±1.24264
H 1.00156 1.00156 1.00156 −0.85179 0.42590 1.58136 ±1.38256 ±1.24264
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FIG. 1. (Color online) Effective dynamic exponents at d = 3
calculated in one-loop order using the one-loop expression for the
flow equations (64) and (66). The effective exponents are calculated
at the biconical FP (full lines) and at the Heisenberg FP (dashed line).
z

(eff)
‖ is valid for both FPs.

exponents:

zφ⊥ = zm = φ

ν
, zφ‖ = 2. (97)

These static exponents might also be taken from static
experiments. All our numerical calculations are performed in
d = 3 (ε = 1). The numerical values of the static exponents
φ and ν have been calculated in two-loop order in paper I
and are given there in Table III (ν = ν+ therein) in two-loop

FIG. 2. (Color online) Flow of the parameters w′
⊥, s = w′′

⊥/w′
⊥,

and f⊥ in one-loop order at d = 3. The calculation has been
performed for the biconical (solid lines) and the Heisenberg (dashed
lines) FP.

order resummed. In one-loop order the two OPs have different
dynamic critical exponents. Scaling is fulfilled only between
the perpendicular OP and the secondary density. The parallel
OP behaves like the van Hove model. This is demonstrated
in Fig. 1, where the effective exponents defined in (55)–(57)
have been calculated by using the dynamic flow equations
in one-loop order. At a flow parameter about l ∼ e−15 for
both, the biconical FP (solid lines) and the Heisenberg FP
(dashed lines), the asymptotic values zφ⊥, zm of the effective
dynamic exponents z

(eff)
⊥ and z(eff)

m are reached. The classical
value zφ‖ = 2, valid for both static fixed points, also is indicated
by a straight line. The corresponding flow is presented in Fig. 2,
which proofs that the dynamic exponents in Fig. 1 have reached
their asymptotic behavior because the dynamic parameters are
at their FP values at ln l = −25.

VIII. LIMITING BEHAVIOR OF THE DYNAMICAL ζ

FUNCTIONS IN TWO-LOOP ORDER

The appearance of ln v terms in the two-loop contribution
to the ζ	⊥ function, Eq. (70), changes the discussion of the
fixed points considerably compared to the one-loop case. In
order to determine the dynamical fixed points of the current
model in two-loop order it is necessary to know something
about the limiting behavior of the ζ functions. For this reason
we will present the ζ functions in cases where one or several
dynamical parameters go to zero or infinity under definite
conditions. This is necessary because some ζ functions exhibit
singular behavior under these conditions, which influences the
discussion of possible fixed points. It is anticipated that the
critical exponents defined by the values of the ζ functions at
the FP are finite and real.

The auxiliary functions X⊥, L
(×)
⊥ , T1, T2, and L

(×)
‖ , which

appear in the ζ functions (70) and (80), behave singularly in
several limits of the parameters. Thus several FP values of
the different parameters can be excluded due to diverging ζ

functions. For a summary of the subsequent analysis of the ζ

function on the time-scale ratios see Table III.
(1) First, we will consider the two functions X⊥ and L

(×)
⊥ in

Eqs. (74) and (79), which appear in ζ	⊥ and depend on v only.
These two functions remain regular if v grows to infinity. In this
case one simply has X⊥(v → ∞) = 1 and L

(×)
⊥ (v → ∞) = 0.

But for vanishing v both functions evolve a term proportional
to ln v. One gets

X⊥(v → 0) ∼ ln(2v), L
(×)
⊥ (v → 0) ∼ − ln(2v). (98)

TABLE III. Limiting behavior of the dynamic ζ functions.

Limit ζ	⊥ ζ	‖ ζλ

v → 0 ∼ ln v Regular Unaffected
v → ∞ Regular ∼ ln v Unaffected
w⊥ → ∞ ∼ ln w⊥ Regular ∼w′2

⊥
w‖ → ∞ Regular ∼ ln w‖ Unaffected
w⊥ → 0 Regular ∼ ln v Regular
w‖ → 0 ∼ ln v Regular Unaffected
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Thus divergent ln v terms appear in ζ	⊥ (v → 0) independent
from the individual behavior of w⊥ and w‖ because only the
ratio v enters the function.

(2) The dynamic ζ function (80) of the parallel component
contains the three functions T1, T2, and L

(×)
‖ defined in

Eqs. (81), (82), and (84), which contain the ratio v. These
functions, and therefore also ζ	‖ , remain nondivergent for
vanishing v. One obtains

T1(v → 0) = D⊥

[
1 + ln

(
1 + 1

v⊥

)
− 1

v⊥
ln(1 + v⊥)

]
,

T2(v → 0) = −w�
⊥D⊥

[
ln

(
1 + 1

v⊥

)
+ ln(1 + v⊥)

]
,

L
(×)
‖ (v → 0) = 0. (99)

But they diverge when v is growing to infinity:

T1(v → ∞) ∼ D⊥ ln

(
1 + 1

v⊥

)
v

,

T2(v → ∞) ∼ −w�
⊥D⊥ ln

(
1 + 1

v⊥

)
v

, (100)

L
(×)
‖ (v → ∞) ∼ ln

v(
1 + 1

v⊥

) .

In contrast to the case (1) the function ζ	‖ in the parallel
subspace evolves logarithmic terms ln v in the limit v → ∞
and stays finite in the limit v → 0. The above discussion is also
independent of the individual behavior of w⊥ and w‖ because
only the ratio v⊥ stays always finite, and the three functions T1,
T2 and L

(×)
‖ remain finite even for diverging time-scale ratios

if their prefactors are taken into account.
(3) Additional logarithmic singularities may arise in the

dynamic ζ functions if the time-scale ratios w⊥ and w‖ grow
individually to infinity independent of the behavior of v. A
closer examination of (70) reveals that in the limit w⊥ → ∞
the ζ function is proportional to

ζ	⊥ (w⊥ → ∞) ∼ 1

2
γ 4

⊥ ln
w⊥
2

(101)

independent of the behavior of v. Quite analogously the same
happens in Eq. (80) when w‖ grows to infinity. One obtains

ζ	‖(w‖ → ∞) ∼ 1

2
γ 4

‖ ln
w‖
2

. (102)

Supposing a finite (different from zero or infinity) FP value
f �

⊥ for the mode coupling parameter we may conclude the
following concerning the allowed FP values of the remaining
parameters:

(a) From (1) and (2) follows that v� has to be also different
from zero or infinity, otherwise ln v contributions would lead
to divergent ζ functions.

(b) From (3) follows that the finite v� can be realized only
either by w‖ and w⊥ both finite, or w‖ and w⊥ both going
to zero in the same way. The possibility that both time-scale
ratios are going to infinity in the same way is excluded because
of the ln w‖ and ln w⊥ terms appearing in this case.

IX. GENERAL ASYMPTOTIC RELATIONS

The FP values {α�
j } of the model parameters are found

from the zeros of the β functions in Eqs. (64)–(66). From the
right-hand side of the equations one obtains

w�
⊥(ζ �

	⊥ − ζ �
λ ) = 0, (103)

w�
‖(ζ �

	‖ − ζ �
λ ) = 0, (104)

f �
⊥

(
ε + ζ �

λ − 2ζ �
m + Re

[
w�

⊥
w′�

⊥
ζ �
	⊥

])
= 0. (105)

A FP that fulfills Eqs. (103)–(105) has to be also a solution of

v�(ζ �
	‖ − ζ �

	⊥ ) = 0, (106)

which follows from (67). The ζ function ζ	⊥ for the perpen-
dicular component of the OP relaxation is a complex function.
Separating real and imaginary part leads to

ζ	⊥ = ζ ′
	⊥ + iζ ′′

	⊥ . (107)

As a consequence also the equations (103) for w⊥ and (106)
for v are complex expressions. The ζ function for 	′

⊥ is

ζ	′
⊥ = ζ ′

	⊥ − w′′
⊥

w′
⊥

ζ ′′
	⊥ . (108)

We anticipate that in a real physical system definite dynam-
ical exponents exist, and therefore the dynamic ζ functions
have to be finite at the stable FP. As already mentioned in
Sec. VIII, the ζ functions contain ln v terms requiring a finite
FP value v� in order to obtain finite dynamical exponents.
Separating (106) into real and imaginary part, one has

v′�(ζ ′�
	⊥ − ζ �

	‖ ) − v′′�ζ ′′�
	⊥ = 0, (109)

v′�ζ ′′�
	⊥ + v′′�(ζ ′�

	⊥ − ζ �
	‖ ) = 0. (110)

From these two equations the FP relations

ζ ′�
	⊥ = ζ �

	‖ , ζ ′′�
	⊥ = 0 (111)

immediately follow. The second equation in Eq. (111) implies
that the dynamical exponent zφ⊥ in Eq. (54) can be written as

zφ⊥ = 2 + ζ ′�
	⊥ . (112)

From the first relation in Eq. (111) follows

zφ⊥ = zφ‖ . (113)

This means that in the case of a finite FP value v� scaling
between the OPs is valid. In order to obtain a critical behavior
different from model C, the FP value f �

⊥ of the mode coupling
parameter also has to be finite and different from zero. Then
from Eq. (105) follows

ε + ζ ′�
	⊥ + ζ �

λ − 2ζ �
m = 0, (114)

where the second relation of (111) already has been used.
Inserting (85) and (95) into (114) one obtains the relation

zφ⊥ + zm = 2
φ

ν
(115)

between the exponents. In summary, the condition that both
v� and f �

⊥ have to be finite leads to the two relations (113) and
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(115) between the exponents. Further relations are dependent
whether the FP values of the time-scale ratios w⊥ and w‖ are
finite or zero and lead to the following cases.

1. Dynamical strong scaling FP

In the case that w⊥ and w‖ are finite at the FP, from (103)
and (104) the relation

ζ ′�
	⊥ = ζ �

	‖ = ζ �
λ (116)

is obtained, where (111) already has been used. From (54)
it follows immediately that the dynamical exponents have to
fulfill the relations

zφ⊥ = zφ‖ = zm ≡ z. (117)

Thus in the case of strong scaling one dynamical exponent z

exists only. The exact value of this exponent can be found by
inserting (117) into (115). One obtains

z = φ

ν
. (118)

2. Dynamical weak scaling FP

In the case that w⊥ and w‖ are zero with v finite at the FP,
Eqs. (103) and (104) are trivially fulfilled, and no additional
relation between the ζ functions and dynamical exponents, re-
spectively, arises. As a consequence two dynamical exponents
exist. The first one,

zφ‖ = zφ⊥ = zOP (119)

for the OPs, follows from relation (113). The second one,

zm = 2
φ

ν
− zOP (120)

for the secondary density, is obtained from (115).
A closer examination of the β functions (103)–(105), also

with numerical methods in d = 3, reveals that no FP solution
can be found where both w⊥ and w‖ are finite. Thus the only
solution in d = 3 that remains is w′�

⊥ = w′′�
⊥ = w�

‖ = 0 with v�

and v�
⊥ finite. This result, of course, depends also on the specific

numerical values [23] of the static FPs (given in Table II) used
in the dynamical equations. The stable FP lies then in the
subspace where the time-scale ratios w‖ and w⊥ approach
zero in such a way that their ratios v and v⊥ remain finite and
in general complex quantities. In order to obtain the finite FP
values for v and v⊥ the two-loop ζ functions may be reduced
by setting w⊥ and w‖ equal to zero and keeping their ratios
finite. This will be performed in the following section.

X. CRITICAL BEHAVIOR IN THE
ASYMPTOTIC SUBSPACE

Since the asymmetric couplings γα always appear together
with the time-scale ratios wα , all terms proportional to these
couplings drop out in the asymptotic limit where wα → 0. It
is convenient to introduce the real ratios

s ≡ w′′
⊥

w′
⊥

= 	′′
⊥

	′
⊥

, q ≡ w‖
w′

⊥
= 	‖

	′
⊥

. (121)

Thus only s, q, and f⊥ remain as independent dynamical
variables.

The ratio s determines the behavior of the imaginary part
of w⊥ with respect to the real part, while the ratio q indicates
the behavior of w‖ with respect to the real part of w⊥. The
complex parameters v⊥ and v, introduced in Eqs. (61) and
(60), are expressed by s and q as

v⊥ = 1 + is

1 − is
, v = q

1 + is
(122)

in the following expressions.

A. ζ functions

We discuss the behavior of the ζ functions in the limit
w⊥ → 0 and w‖ → 0 for s and q constant.

1. Case s �= 0

For w⊥ = 0 and w‖ = 0 the ζ function (70) reduces to

ζ
(as)
	⊥ ({u},s,q,f⊥) = − f 2

⊥
1 + is

{
1 + 2

3
u⊥[L0(s) + x−(s)x1(s)L1(s)] − 1

2

f 2
⊥

1 + is
[2x−(s)L1(s) − 2L0(s) + LR(s)]

}
+ ζ

(A)
	⊥ ({u},s,q).

(123)

The functions x−(s), x1(s), L0(s), L1(s), and LR(s) are the
same as in Eqs. (75)–(77) with v⊥ replaced by (122). The same
is true for ζ

(A)
	⊥ ({u},s,q), which has been defined in Eq. (78),

and where also (122) has been used to replace v⊥ and v.
Performing the limit in the dynamical ζ function (80) it

reduces to

ζ
(as)
	‖ ({u},s,q) = ζ

(A)
	‖ ({u},s,q) (124)

where ζ
(A)
	‖ ({u},s,q) is the model A function (83) with relation

(122) inserted into (84).

Finally the function X2 in Eq. (89) simplifies for vanishing
time-scale ratios to

X
(as)
2 (f⊥) = f 2

⊥
2

. (125)

Inserting this expression into (88) and (87), the dynamical ζ

function (85) reads

ζ
(as)
λ ({γ },f⊥) = γ 2

⊥ + 1

2
γ 2

‖ − f 2
⊥
2

(
1 + f 2

⊥
4

)
. (126)
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The value of v⊥ at the FP depends on how w′
⊥ goes to zero

in the critical limit l → 0 compared to w′′
⊥. There are three

possible scenarios:
(1) w′′

⊥ goes to zero faster than w′
⊥ so that s → 0. Then v⊥

is turning to the real value 1.
(2) w′

⊥ and w′′
⊥ behave in the same way so that the ratio

s = s0 is constant. v⊥ is in this case a complex constant

v⊥ = 1 + is0

1 − is0
. (127)

(3) w′
⊥ goes to zero faster than w′′

⊥ so that s → ∞. Then
v⊥ is turning to the real value −1.

The third of the three scenarios above can be excluded from
the discussion because some of the ζ functions do not stay
finite for v⊥ = −1. Finite ζ functions at the FP and therefore
well-defined critical exponents are obtained only in the first
two scenarios.

The ζ function for scenario (2) is already given in
Eqs. (123)–(126) when (127) is inserted.

2. Case s = 0

For v⊥ = 1 (s = 0) the ζ functions (123) and (124) simplify
to

ζ
(as0)
	⊥ ({u},q,f⊥)

= −f 2
⊥

[
1 − f 2

⊥
2

(
27

2
ln

4

3
− 3

)]
+ ζ

(A0)
	⊥ ({u},q), (128)

ζ
(as0)
	‖ ({u},q) = ζ

(A0)
	‖ ({u},q). (129)

The model A functions (78) and (83) are now

ζ
(A0)
	⊥ ({u},q) = u2

⊥
9

(
3 ln

4

3
− 1

2

)
+ u2

×
36

[
L

(×)
⊥ (q) − 1

2

]
(130)

and

ζ
(A0)
	‖ ({u},q) = u2

‖
4

(
ln

4

3
− 1

6

)
+ u2

×
18

[
L

(×)
‖ (q) − 1

2

]
,

(131)

where in L
(×)
i (q), introduced in Eqs. (79) and (84), the relations

(122) with s = 0 have been inserted.

B. Fixed points in the asymptotic subspace

Inserting the ζ functions of the previous subsection into
(103)–(105) one obtains the FP values in the asymptotic
subspace for s� finite, or s� = 0. The results are presented
in Table IV for the biconical (B) and the Heisenberg (H) FP.
It turns out that especially at the biconical FP the values of
the ratio q are extremely small, but definitely not zero. Thus
the asymptotic critical behavior in two-loop order changes
considerably compared to one-loop (see Sec. VII). Weak
scaling as discussed in Sec. IX is valid. The two-order
parameters scale with the same dynamic exponent zOP from
relation (119), while the secondary density scales with a
different dynamic exponent zm given in Eq. (120). The
numerical values of these two dynamic exponents are also
given in Table IV in two-loop order. Note that the values of the

TABLE IV. FP values of the mode coupling f⊥ and the ratios q =
w‖/w′

⊥ and s = w′′
⊥/w′

⊥ in the subspace w‖ = 0, w⊥ = 0 and finite
v = q/(1 + is) for different cases of the biconical B and Heisenberg
H FP in d = 3. For comparison results for model C and model F FPs
are shown at n = 1 and n = 2, correspondingly.

f �
⊥ q� s� zOP zm

C [9] − − 0 2.18 2.18
F [10] 0.83 − 0 ∼1.5 ∼1.5
B 1.232 1.167 × 10−86 0 2.048 1.131
H 1.211 3.324 × 10−8 0 2.003 1.542
B 1.232 2.51 × 10−782 0.705 2.048 1.131
H 1.211 3.16 × 10−66 0.698 2.003 1.542

dynamical exponents to the accuracy shown are independent
wether the FP value of s is zero or not.

The comparison with the dynamical critical exponents in
the cases when the OPs decouple statically and dynamically
into model C and model F shows the changes in the
multicritical case where the exponents are changed but each
component reflects the decoupled values accordingly.

C. Effective exponents in the asymptotic subspace

The flow of the parameters q, s and f⊥ can be found by
solving the equations

l
dq

dl
= q

(
ζ

(as)
	‖ − Re

[
ζ

(as)
	⊥

] + s Im
[
ζ

(as)
	⊥

])
, (132)

l
ds

dl
= (1 + s2) Im

[
ζ

(as)
	⊥

]
, (133)

l
df⊥
dl

= −f⊥
2

(
ε + ζ

(as)
λ − 2ζm + Re

[
ζ

(as)
	⊥

] − Im
[
ζ

(as)
	⊥

])
.

(134)

The ζ functions in the above flow equations are the reduced
expressions (123), (124), and (126), which are functions of
q,s,f⊥. We consider the case s �= 0 since the FP s� = 0
is reached only starting with s = 0. From the solution of
Eqs. (133) and (134) the flow q(l), s(l), f⊥(l) is obtained, which
is used to calculate asymptotic effective dynamic exponents

z
(as)
⊥ (l) = 2 + Re

[
ζ

(as)
	⊥ (q(l),s(l),f⊥(l))

]
− s(l) Im

[
ζ

(as)
	⊥ (q(l),s(l),f⊥(l))

]
, (135)

z
(as)
‖ (l) = 2 + ζ

(as)
	‖ (q(l),s(l)), (136)

z(as)
m (l) = 2 + ζ

(as)
λ (q(l),s(l),f⊥(l)). (137)

They can be calculated for different static fixed points, i.e.,
biconical or Heisenberg FP, as presented in Fig. 3. The values
of u�

⊥, u�
‖, u�

×, as well as γ �
⊥, γ �

‖ , used in the current calculations
can be found in Table II. At both fixed points weak scaling,
as discussed in Sec. IX, is fulfilled. The difference to the
one-loop result is now that the dynamic exponents z

(as)
⊥ and

z
(as)
‖ of the OPs are equal in the asymptotic region, while z(as)

m

stays different. Moreover the transient exponents in two-loop
order are very small compared to one loop. There the effective
exponents reach their asymptotic values about l ∼ e−15 as can
be seen from Fig. 1. In two-loop order the asymptotic region
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FIG. 3. Effective dynamic exponents in the subspace w‖ = w⊥ =
0 with q and s finite in d = 3. The static values are taken for the
Heisenberg FP and for the biconical FP. The nonasymptotic region is
extended by a factor 10 at the biconical FP. For the static FP values,
see Table II; for the dynamic FP values, see Table IV.

is of magnitudes smaller. From Fig. 3 one can see that at
the Heisenberg FP the flow parameter has to be of the order
l ∼ e−1500 to obtain the asymptotic values of the dynamic
exponents. At the biconical FP l has to be even of the order
l ∼ e−15000 (note that there is a factor 10 between the x scales
in Fig. 3) to reach asymptotic values. However, as will be seen
in the next section the subspace will not be reached by the flow
in the complete parameter space for reasonable values of l.

XI. GENERAL FLOW AND PSEUDO-ASYMPTOTICS

Although in general the dynamic flow equations have to be
solved in the full parameter space, the results for the effective
exponents presented in the previous subsection are obtained
from the flow equations, which already have been reduced
to the subspace w⊥ = w‖ = 0. The reason to do this is that
the flow and the ζ functions in the full parameter space show
peculiar behavior.

In the nonasymptotic region the flow is generated by the
system of equations for four parameters, which are w′

⊥, s, w‖,
and f⊥ obtained from Eqs. (64)–(66) and (121). The static
parameters are taken at their FP values given in Table II. Due
to the presence of the static asymmetric couplings γi and the
mode coupling f⊥ an imaginary part of w⊥ is produced even
if one starts with a zero initial value. Starting with a typical set
of initial values, i.e., w‖(l0) = 0.3, w′

⊥(l0) = 0.6, s(l0) = 0.5,

and f⊥(l0) = 0.4 at the flow parameter value ln l0 = −1, the

FIG. 4. (Color online) Effective dynamic exponents in the back-
ground using the flow equations (64) and (66) in two-loop order in
d = 3 in the complete dynamical parameter space (full lines). For
comparison the effective dynamic exponent z(eff)

m in one-loop order is
shown (dashed line).

effective exponents in the complete parameter space have
been calculated in d = 3. The result is presented in Fig. 4
for both static fixed points, where the solid lines are the
results of the two-loop calculation, and the dashed line is a
result of a complete (flow and effective exponent) one-loop
calculation. However, the static FP values from Table II
have been used also in the dynamic one-loop flow. There
it seems that in two-loop order the same results as in the
one loop calculation are obtained. z

(eff)
⊥ and z(eff)

m are getting
close together (solid lines) for flow parameters l < e−100 and
seem to coincide even numerically with the corresponding
results in one-loop order (dashed line). This is the type of
weak scaling in one-loop order, which also can be seen from
Fig. 1 and in qualitative contradiction to the discussion in the
previous sections (see Fig. 3). But the examination of the flow
of the dynamic parameters reveals a fundamental difference
between the one- and two-loop calculation. In one-loop order
the dynamic parameters w′

⊥, s, w‖, and f⊥ merge to the FP
values when the effective exponents turn over in their constant
asymptotic values, which is presented in Fig. 2. This happens
in the region about l < e−15 and the dynamic parameters stay
constant for all lower flow parameter values. In two-loop order
the situation is different. Although the two-loop results for the
effective exponents look like one has reached the asymptotic
region (the exponents seem to be constant), the dynamic
parameters in contrast are far from their asymptotic FP values.
This is presented in Fig. 5. The parameters w′

⊥ and s are
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FIG. 5. Flow of the parameters w′
⊥, s, and f⊥ in the full parameter

space.

still increasing and obviously have not reached a FP value.
At the first glance the flow of f⊥ seems to have reached a
FP value (see lowest plot in Fig. 5). But a closer examination
shows that this is not the case. f⊥ is constantly increasing
with a very small slope, as can be seen from the inserted small
figure, where both axes have been enlarged. Actually the set
of two-loop β functions does not have a zero for finite w⊥
and w‖, and therefore no FP exists in the parameter region of
Fig. 5. Thus the effective exponents in two-loop order in Fig. 4
show only a pseudo-asymptotic behavior completely different
from real asymptotic behavior (there z

(eff)
⊥ and z

(eff)
‖ have to be

equal) discussed in Sec. X C (see Fig. 3). Even if one draws
the x axis in Fig. 4 down to ln l = −20 000, as done for the
flow in Fig. 5, the picture remains to be the same, that is, the
effective exponents seem to be constant, with the exception
that the background behavior is not longer visible because the
region is too small. Also if one changes initial conditions of
the parameters the qualitative result remains the same. The
different flows merge within a region of ln l = −150 to the
same result.

In order to get some insight how this pseudo-asymptotic
behavior is possible, in Fig. 6 the relative slopes

1

αi

dαi

d ln l
= βαi

αi

(138)

for the parameters αi chosen to be w′
⊥ and f⊥ have been

calculated. One can see that the relative changes in these
parameters drop to very small values. As a first consequence
one has to calculate down to extremely small flow parameter
values ln l < −108 where one can expect to leave the pseudo-
asymptotic region. But although the β functions cannot be
zero in the considered parameter range, they may reach values

FIG. 6. Relative slope of the parameters w′
⊥ and f⊥ in the full

parameter space.

which are so small that they cannot longer be separated
numerically from zero. This means that coming from the
background it is impossible to pass the pseudo-asymptotic
region numerically into the real asymptotic region. This is the
reason why in the previous section the flow has been started
in an asymptotic subspace.

Due to the presence of logarithmic terms in the time-scale
ratio v the FP value of v has to be finite. As follows from
Table IV via Eq. (122) it turns out to be very small, leading to
very large (negative) values of ln v. So one expects that the ln v

terms begin to dominate ζ	⊥ in a certain region of ln l near the
asymptotics. Making the ln v terms explicit one may rewrite
ζ	⊥ , given in Eq. (70), as

ζ	⊥ = −1

2

γ‖D⊥
1 + w⊥

(
u×
3

+ 1

2

γ‖D⊥
1 + w⊥

)
ln v

− u2
×

36
ln v + remaining terms. (139)

Inserting Eq. (122), the essential term is the real part V ′ of the
prefactor of ln q. One obtains

ζ	⊥ = V ′ ln q + remaining terms. (140)

The prefactor V ′ is

V ′ = −
[
u2

×
36

+ 1

2
γ‖A

(
u×
3

+ 1

2
γ‖A

)
− 1

4
γ 2

‖ B2

]
(141)

with

A = w′
⊥[(1 + w′

⊥ + w′
⊥s2)γ⊥ − sF ]

(1 + w′
⊥)2 + (w′

⊥s)2
, (142)

B = w′
⊥sγ⊥ − (1 + w′

⊥)F ]

(1 + w′
⊥)2 + (w′

⊥s)2
. (143)
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FIG. 7. (Color online) Contribution of the V ′ ln q term in
Eq. (140) (lower figure). It is of the same magnitude as the other
terms in the ζ function. V ′ and ln q have the same behavior with
opposite exponents. This is demonstrated in the upper figure, where
the decadic logarithm of V ′ (solid curve) and the negative decadic
logarithm of −ln q have been drawn (dashed curves).

In Fig. 7 the behavior of the ln q contributions to ζ	⊥ at the
biconical FP is presented. Although the ln q term already
reaches very large negative values (q is very small), as
expected, this is compensated by the prefactor V ′, which has
very small values in the considered region. In the upper part of
Fig. 7 the decadic logarithm of V ′ and − ln q have been plotted.
Both curves show a similar behavior and a small difference.
In the lower part V ′ ln q is calculated from (141)–(143). As a
consequence of the results in the upper part of the figure the
numerical values are about −0.5, and one can see that the term
is far from being the leading one. There are other contributions
to ζ	⊥ that have the same magnitude. Thus the ζ function is
not in the asymptotic region, as has been also indicated by the
flow in Fig. 5.

Thus one expects in the experimentally accessible region
nonuniversal effective dynamical critical behavior. This is
described in the crossover region to the background by the
flow equations together with a suitable matching condition
related to the temperature distance, the wave vector modulus,
etc. The initial conditions have to be found by comparison with
experiment.

XII. CONCLUSION

Our two-loop calculation for the dynamics at the multi-
critical point in anisotropic antiferromagnets in an external
magnetic field leads to a FP where the OPs characterizing the
parallel and perpendicular ordering with respect to the external

field scale in the same way (strong dynamic scaling). This
holds independent wether the Heisenberg FP or the biconical
FP in statics is the stable one. The nonasymptotic analysis
of the dynamic flow equations show that due to cancellation
effects the critical behavior is described, in distances from the
critical point accessible to experiments, by the critical behavior
qualitatively found in one-loop order. That means the time
scales of the two OP components become almost constant in
a so-called pseudo-asymptotic region and scale differently.

So far we have not included the nonasymptotic flow of
the static parameters, which are expected to lead to minor
deviations from the overall picture. Another item would be
the study of the decoupled FP since in the nonasymptotic
region the OPs remain statically and dynamically coupled,
and the behavior depend on the stability exponents how fast
these effects decay. This in turn depends on the distance of
the system in dimensional space and the space of the OP
components from the stability border line to other FPs than
the decoupled FP (see Fig. 1 in paper I).

The numerical results presented in this series of papers have
been calculated for dimension d = 3. One might speculate
that the peculiar behavior found is specific to the dimension
of the physical space rather than to the multicritical character
of the specific point. This aspect was out of the scope of this
series of papers. We note that the two critical lines meet at the
multicritical point (bicritical or tetracritical) tangential. This
has been taken into account for the nonasymptotic behavior
by choosing a path approaching the multicritical point without
meeting one of the two critical lines [24]. The nonasymptotic
behavior, in fact, is more complicated since two critical length
scales are present in the system. This has to be taken into
account when studying the crossover behavior in approaching
one of the critical lines [25].

Only recently a bicritical point has been identified by
computer simulation [26]. The corresponding FP has been
identified as the Heisenberg FP, which corresponds to the type
of phase diagram obtained. It seems to be difficult to look
for situations where a phase diagram containing a tetracritical
point is present. Even more complicated would it be to identify
the dynamical characteristic of this multicritical point, where,
coming from the disordered phase, two lines belonging to
different dynamic universality classes meet. The dynamical
universality class of the case with a n = 1 OP (model C) has
been studied in Refs. [27,28] with different results leading
to critical exponents larger than expected. The dynamical
universality class of the case with a n = 2 OP (model F) case
has been studied by computer simulations in Refs. [29,30].
The methods of these simulations might be extended in order
to be used also in the case of the multicritical point studied in
this paper.
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APPENDIX A: CALCULATION OF THE DYNAMIC
VERTEX FUNCTIONS OF THE OPs

In perturbation expansion up to two-loop order the functions
�̊ψψ̃+ , 	̊

(d)
ψψ̃+ , and �̊φ‖φ̃‖ , which appear in Eqs. (27) and (28),

can be written as

�̊ψψ̃+(ξ⊥,ξ‖,k,ω) = 1 + �̊
(1L)
ψψ̃+(ξ⊥,k,ω) + �̊

(2L)
ψψ̃+(ξ⊥,ξ‖,k,ω),

(A1)

	̊
(d)
ψψ̃+(ξ⊥,ξ‖,k,ω)

= 2
[
	̊⊥ + G̊

(1L)
ψψ̃+(ξ⊥,k,ω) + G̊

(2L)
ψψ̃+(ξ⊥,ξ‖,k,ω)

]
, (A2)

�̊φ‖φ̃‖(ξ⊥,ξ‖,k,ω) = 1 + �̊
(1L)
φ‖φ̃‖

(ξ‖,k,ω) + �̊
(2L)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω).

(A3)

The superscript (iL) indicates the loop order. Of course,
all functions considered depend on all model parameters
(couplings and kinetic coefficients), but only the independent

lengths ξ⊥, ξ‖, k, and ω will be mentioned explicitly in the
following. The one-loop contributions are

�̊
(1L)
ψψ̃+(ξ⊥,k,ω) = (	̊⊥γ̊⊥ − ig̊)γ̊⊥I⊥(ξ⊥,k,ω), (A4)

G̊
(1L)
ψψ̃+(ξ⊥,k,ω) = (	̊⊥γ̊⊥ − ig̊)ig̊I⊥(ξ‖,k,ω), (A5)

�̊
(1L)
φ‖φ̃‖

(ξ‖,k,ω) = 	̊‖γ̊ 2
‖ I‖(ξ‖,k,ω) . (A6)

The one-loop integrals I⊥ and I‖ in Eqs. (A4)–(A6) read

I⊥(ξ⊥,k,ω) =
∫

k′

1

[ξ−2
⊥ + (k + k′)2](−iω + α′

⊥)
, (A7)

I‖(ξ‖,k,ω) =
∫

k′

1

[ξ−2
‖ + (k + k′)2](−iω + α′

‖)
. (A8)

The dynamic propagators α′
⊥ and α′

‖ are defined as

α′
⊥ ≡ 	̊⊥[ξ−2

⊥ + (k + k′)2] + λ̊k′2, (A9)

α′
‖ ≡ 	̊‖[ξ−2

‖ + (k + k′)2] + λ̊k′2. (A10)

The two-loop contributions to the dynamic vertex function of
the orthogonal components (A1) and (A2) have the structure

�̊
(2L)
ψψ̃+(ξ⊥,ξ‖,k,ω) = 2

9 	̊⊥ů2
⊥W̊

(A⊥)
ψψ̃+(ξ⊥,k,ω) + 1

18 	̊⊥ů2
×W̊

(A×)
ψψ̃+(ξ⊥,ξ‖,k,ω) − 2

3 (2	̊⊥γ̊⊥ − ig̊)ů⊥F̊
(T 3⊥)
ψψ̃+ (ξ⊥,k,ω)

− 1
6 (2	̊⊥γ̊⊥ − ig̊)ů×F̊

(T 3×)
ψψ̃+ (ξ⊥,ξ‖,k,ω) + (	̊⊥γ̊⊥ − ig̊)γ̊⊥F̊ψψ̃+(ξ⊥,ξ‖,k,ω) (A11)

and

G̊
(2L)
ψψ̃+(ξ⊥,ξ‖,k,ω) = − 2

3 	̊⊥ů⊥ig̊F̊
(T 3⊥)
ψψ̃+ (ξ⊥,k,ω) − 1

6 	̊⊥ů×ig̊F̊
(T 3×)
ψψ̃+ (ξ⊥,ξ‖,k,ω) + (	̊⊥γ̊⊥ − ig̊)ig̊F̊ψψ̃+(ξ⊥,ξ‖,k,ω). (A12)

Note that both two-loop functions differ only in terms containing the static fourth-order couplings ů⊥ and ů×. The remaining
contributions are the same in both functions apart from a factor γ̊⊥ and ig̊, respectively. The function F̊ψψ̃+ is defined as

F̊ψψ̃+(ξ⊥,ξ‖,k,ω) ≡ (	̊⊥γ̊⊥ − ig̊)2F̊
(T 4⊥)
ψψ̃+ (ξ⊥,k,ω) + F̊

(T 5⊥)
ψψ̃+ (ξ⊥,k,ω) − γ̊⊥F̊

(T 3⊥)
ψψ̃+ (ξ⊥,k,ω)

+ 1
2

[
F̊

(T 5×)
ψψ̃+ (ξ⊥,ξ‖,k,ω) − γ̊‖F̊

(T 3×)
ψψ̃+ (ξ⊥,ξ‖,k,ω)

] + F̊
(T 6⊥)
ψψ̃+ (ξ⊥,k,ω) − γ̊⊥F̊

(T 3⊥)
ψψ̃+ (ξ⊥,k,ω). (A13)

The first two-loop contributions in Eq. (A11) come from the bicritical model A. The integrals W̊
(Ai )
ψψ̃+ are defined by

W̊
(A⊥)
ψψ̃+(ξ⊥,k,ω) =

∫
k′

∫
k′′

1

[ξ−2
⊥ + (k + k′)2](ξ−2

⊥ + k′′2)[ξ−2
⊥ + (k′ + k′′)2](−iω + A⊥⊥+⊥)

, (A14)

W̊
(A×)
ψψ̃+(ξ⊥,ξ‖,k,ω) =

∫
k′

∫
k′′

1

[ξ−2
⊥ + (k + k′)2](ξ−2

‖ + k′′2)[ξ−2
‖ + (k′ + k′′)2](−iω + A⊥‖‖)

(A15)

with

A⊥⊥+⊥ ≡ 	̊⊥[ξ−2
⊥ + (k + k′)2] + 	̊+

⊥(ξ−2
⊥ + k′′2) + 	̊⊥[ξ−2

⊥ + (k′ + k′′)2] (A16)

and

A⊥‖‖ ≡ 	̊⊥[ξ−2
⊥ + (k + k′)2] + 	̊‖(ξ−2

‖ + k′′2) + 	̊‖[ξ−2
‖ + (k′ + k′′)2]. (A17)

The further two-loop contributions in Eqs. (A11)–(A13) are marked with superscripts (T i), which indicate the different graph
topologies. The explicit expressions are

F̊
(T 3⊥)
ψψ̃+ (ξ⊥,k,ω) =

∫
k′

∫
k′′

1

[ξ−2
⊥ + (k + k′)2](−iω + α′

⊥)(−iω + A⊥⊥+⊥)

[
	̊⊥γ̊⊥ − ig̊

ξ−2
⊥ + k′′2 + 	̊+

⊥ γ̊⊥ + ig̊

ξ−2
⊥ + (k′ + k′′)2

]
, (A18)

F̊
(T 3×)
ψψ̃+ (ξ⊥,ξ‖,k,ω) =

∫
k′

∫
k′′

2	̊‖γ̊‖
[ξ−2

⊥ + (k + k′)2](ξ−2
‖ + k′′2)(−iω + α′

‖)(−iω + A⊥‖‖)
, (A19)
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F̊
(T 4⊥)
ψψ̃+ (ξ⊥,k,ω) =

∫
k′

∫
k′′

1

[ξ−2
⊥ + (k + k′ + k′′)2](−iω + α′

⊥)2(−iω + β⊥)
, (A20)

F̊
(T 5⊥)
ψψ̃+ (ξ⊥,k,ω) =

∫
k′

∫
k′′

γ̊⊥λ̊k′2 − ig̊[(k′ + k′′)2 − k′′2]

[ξ−2
⊥ + (k + k′)2](−iω + α′

⊥)2(−iω + A⊥⊥+⊥)

[
	̊⊥γ̊⊥ − ig̊

ξ−2
⊥ + k′′2 + 	̊+

⊥ γ̊⊥ + ig̊

ξ−2
⊥ + (k′ + k′′)2

]
, (A21)

F̊
(T 5×)
ψψ̃+ (ξ⊥,ξ‖,k,ω) =

∫
k′

∫
k′′

2	̊‖γ̊ 2
‖ λ̊k′2

[ξ−2
⊥ + (k + k′)2](ξ−2

‖ + k′′2)(−iω + α′
⊥)2(−iω + A⊥‖‖)

, (A22)

F̊
(T 6⊥)
ψψ̃+ (ξ⊥,k,ω) =

∫
k′

∫
k′′

γ̊⊥λ̊k′′2 + ig̊[(k + k′ + k′′)2 − (k + k′)2)]

[ξ−2
⊥ + (k + k′)2](−iω + α′

⊥)(−iω + α′′
⊥)(−iω + S⊥⊥+⊥)

[
	̊⊥γ̊⊥ − ig̊

ξ−2
⊥ + (k + k′ + k′′)2

+ 	̊+
⊥ γ̊⊥ + ig̊

ξ−2
⊥ + (k + k′′)2

]

+
∫

k′

∫
k′′

	̊⊥γ̊⊥ − ig̊

[ξ−2
⊥ + (k + k′)2](−iω + α′′

⊥)(−iω + β⊥)

{
	̊⊥γ̊⊥ − ig̊

−iω + α′
⊥

+ γ̊⊥
ξ−2
⊥ + (k + k′ + k′′)2

+ γ̊⊥λ̊k′′2 + ig̊[(k + k′ + k′′)2−(k + k′)2)]

[ξ−2
⊥ + (k + k′ + k′′)2](−iω + α′

⊥)

}
, (A23)

with the dynamic propagators

β⊥ ≡ 	̊⊥[ξ−2
⊥ + (k + k′ + k′′)2] + λ̊(k′2 + k′′2), (A24)

S⊥⊥+⊥ ≡ 	̊⊥[ξ−2
⊥ + (k + k′)2] + 	̊+

⊥[ξ−2
⊥ + (k + k′ + k′′)2] + 	̊⊥[ξ−2

⊥ + (k + k′′)2], (A25)

which are both invariant under an interchange of k′ and k′′, and α′′
⊥ ≡ 	̊⊥(ξ−2

⊥ + (k + k′′)2) + λ̊k′′2.
The two-loop contributions to the dynamic vertex function of the parallel component (A3) have the structure

�̊
(2L)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) = 1
6 	̊‖ů2

‖W̊
(A‖)
φ‖φ̃‖

(ξ‖,k,ω) + 1
9 	̊‖ů2

×W̊
(A×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) − 	̊‖ů‖γ̊‖F̊
(T 3‖)
φ‖φ̃‖

(ξ‖,k,ω)

− 2
3 	̊‖ů×γ̊‖F̊

(T 3×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) + 	̊‖γ̊ 2
‖ F̊φ‖φ̃‖(ξ⊥,ξ‖,k,ω). (A26)

The function F̊φ‖φ̃‖ is defined as

F̊φ‖φ̃‖(ξ⊥,ξ‖,k,ω) ≡ 	̊2
‖ γ̊

2
‖ F̊

(T 4‖)
φ‖φ̃‖

(ξ‖,k,ω) + 1
2

(
F̊

(T 5‖)
φ‖φ̃‖

(ξ‖,k,ω) − γ̊‖F̊
(T 3‖)
φ‖φ̃‖

(ξ‖,k,ω)
) + F̊

(T 5×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω)

− γ̊⊥F̊
(T 3×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) + F̊
(T 6‖)
φ‖φ̃‖

(ξ‖,k,ω) − γ̊‖F̊
(T 3‖)
φ‖φ̃‖

(ξ‖,k,ω). (A27)

The integrals W̊
(Ai )
φ‖φ̃‖

in the two-loop contributions from the bicritical model A are

W̊
(A‖)
φ‖φ̃‖

(ξ‖,k,ω) =
∫

k′

∫
k′′

1

[ξ−2
‖ + (k + k′)2](ξ−2

‖ + k′′2)[ξ−2
‖ + (k′ + k′′)2](−iω + A‖‖‖)

, (A28)

W̊
(A×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) =
∫

k′

∫
k′′

1

[ξ−2
‖ + (k + k′)2](ξ−2

⊥ + k′′2)[ξ−2
⊥ + (k′ + k′′)2](−iω + A‖⊥+⊥)

(A29)

with the propagators

A‖‖‖ ≡ 	̊‖[ξ−2
‖ + (k + k′)2] + 	̊‖(ξ−2

‖ + k′′2) + 	̊‖[ξ−2
‖ + (k′ + k′′)2], (A30)

and

A‖⊥+⊥ ≡ 	̊‖[ξ−2
‖ + (k + k′)2] + 	̊+

⊥(ξ−2
⊥ + k′′2) + 	̊⊥[ξ−2

⊥ + (k′ + k′′)2]. (A31)

The remaining two-loop contributions in Eqs. (A26) and (A27) are

F̊
(T 3‖)
φ‖φ̃‖

(ξ‖,k,ω) =
∫

k′

∫
k′′

2	̊‖γ̊‖
[ξ−2

‖ + (k + k′)2](ξ−2
‖ + k′′2)(−iω + α′

‖)(−iω + A‖‖‖)
, (A32)

F̊
(T 3×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) =
∫

k′

∫
k′′

1

[ξ−2
‖ + (k + k′)2](−iω + α′

‖)(−iω + A‖⊥+⊥)

[
	̊⊥γ̊⊥−ig̊

ξ−2
⊥ + k′′2 + 	̊+

⊥ γ̊⊥ + ig̊

ξ−2
⊥ + (k′ + k′′)2

]
, (A33)
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F̊
(T 4‖)
φ‖φ̃‖

(ξ|,k,ω) =
∫

k′

∫
k′′

1

[ξ−2
‖ + (k +k′ + k′′)2](−iω + α′

‖)2(−iω + β‖)
, (A34)

F̊
(T 5‖)
φ‖φ̃‖

(ξ|,k,ω) =
∫

k′

∫
k′′

2	̊‖γ̊ 2
‖ λ̊k′2

[ξ−2
‖ + (k + k′)2](ξ−2

‖ + k′′2)(−iω + α′
‖)2(−iω + A‖‖‖)

, (A35)

F̊
(T 5×)
φ‖φ̃‖

(ξ⊥,ξ‖,k,ω) =
∫

k′

∫
k′′

γ̊⊥λ̊k′2 − ig̊[(k′ + k′′)2 − k′′2]

[ξ−2
‖ + (k + k′)2](−iω + α′

‖)2(−iω + A‖⊥+⊥)

[
	̊⊥γ̊⊥ − ig̊

ξ−2
⊥ + k′′2 + 	̊+

⊥ γ̊⊥ + ig̊

ξ−2
⊥ + (k′ + k′′)2

]
, (A36)

F̊
(T 6‖)
φ‖φ̃‖

(ξ‖,k,ω) =
∫

k′

∫
k′′

	̊‖γ̊ 2
‖ λ̊k′′2

[ξ−2
‖ + (k + k′)2](−iω + α′

‖)(−iω + α′′
‖ )(−iω + S‖‖‖)

[
1

ξ−2
‖ + (k + k′ + k′′)2

+ 1

ξ−2
‖ + (k + k′′)2

]

+
∫

k′

∫
k′′

	̊‖γ̊ 2
‖

[ξ−2
‖ + (k + k′)2](−iω + α′′

‖ )(−iω + β‖)

[
	̊‖

−iω + α′
‖

+ 1

ξ−2
‖ + (k + k′ + k′′)2

(
1 + λ̊k′′2

−iω + α′
‖

)]
.

(A37)

The additional dynamic propagators are

S‖‖‖ ≡ 	̊‖[ξ−2
‖ + (k + k′)2] + 	̊‖[ξ−2

‖ + (k + k′ + k′′)2] + 	̊‖[ξ−2
‖ + (k + k′′)2]

and

α′′
‖ ≡ 	̊‖[ξ−2

‖ + (k + k′′)2] + λ̊k′′2, β‖ ≡ 	̊‖[ξ−2
‖ + (k + k′ + k′′)2] + λ̊(k′2 + k′′2). (A38)

The integrals contained in Eqs. (A14)–(A23) and (A28)–(A37) are of the same type as already has been presented in Ref. [31]
[see Eqs. (A19)–(A26) in the Appendix therein]. The ε poles of these integrals can be found in Eqs. (C2)–(C19) of the same
reference.

APPENDIX B: DYNAMIC Z FACTORS IN TWO-LOOP ORDER

Within the minimal subtraction scheme of the renormalization group calculation one has to collect in two-loop order the pole
terms of order 1/ε2 and 1/ε in the functions �̊ψψ̃+ and 	̊

(d)
ψψ̃+ in Eq. (27). The resulting dynamic renormalization factors are

Z
1/2
ψ̃∗ = 1 − 1

ε

γ⊥D⊥
1 + w⊥

− 1

ε

[
u2

⊥
18

(
L0 + x1L1 − 1

4

)
+ u2

×
72

(
L

(×)
⊥ − 1

4

)]

+ 1

4ε

{
2

3

u⊥(w⊥γ⊥ + D⊥)

w⊥(1 + w⊥)
A⊥ + γ⊥D⊥

w⊥(1 + w⊥)2
B⊥ + γ‖

2(1 + w⊥)

[
u×
3

(w⊥γ⊥ + D⊥) + w⊥γ⊥γ‖D⊥
1 + w⊥

]
X⊥

}

+ 1

2ε2

{
− w⊥γ⊥ + D⊥

1 + w⊥

(
2

3
u⊥γ⊥ + u×

6
γ‖

)
+ γ⊥D⊥

(1 + w⊥)2

[
D2

⊥
1 + w⊥

− w2
⊥

(
γ 2

⊥ + γ 2
‖
2

)
− f 2

⊥
2

]}
, (B1)

Z
(d)
	⊥ = 1 − 1

ε

iFD⊥
w⊥(1 + w⊥)

+ 1

4ε

[
2

3

u⊥iF

w⊥(1 + w⊥)
A⊥ + iFD⊥

w2
⊥(1 + w⊥)2

B⊥ + γ‖iF

2(1 + w⊥)

(
u×
3

+ γ‖D⊥
1 + w⊥

)
X⊥

]

+ 1

2ε2

{
− iF

1 + w⊥

(
2

3
u⊥γ⊥ + u×

6
γ‖

)
+ iFD⊥

w⊥(1 + w⊥)2

[
D2

⊥
1 + w⊥

− w2
⊥
(
γ 2

⊥ + γ 2
‖
2

)
− f 2

⊥
2

]}
. (B2)

The coupling D⊥ and the functions A⊥, B⊥, X⊥ and L
(×)
⊥ are defined in Eqs. (71)–(74), (79). The pole terms of the function

	̊
(d)
φ‖φ̃+

‖
are collected in the renormalization factor

Z	‖ = 1 + 1

ε

w‖γ 2
‖

1 + w‖
+ 1

ε

[
u2

‖
8

(
ln

4

3
− 1

6

)
+ u2

×
36

(
L

(×)
‖ − 1

2

) ]

− 1

4ε

{
w‖γ 2

‖
1 + w‖

u‖

(
1 − 3 ln

4

3

)
+

(
w‖γ 2

‖
1 + w‖

)2[1

2

(
1 − 9 ln

4

3

)
− w‖

1 + w‖
− 1 + 2w‖

1 + w‖
ln

(1 + w‖)2

1 + 2w‖

]
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+
(

2

3
u× + w‖γ‖

1 + w‖
γ⊥

)
Re

(
T1

w′
⊥

)
− γ‖F

2w′
⊥(1 + w‖)

Im

(
T2

w′
⊥

) }

+ 1

2ε2
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{
u‖γ‖ + 2
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u×γ⊥ + γ‖
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[
w‖γ 2

‖

(
1

2
− w‖

1 + w‖

)
+ w‖γ 2

⊥ + f 2
⊥
2

]
+ 2w‖γ 3

‖
1 + w‖

}
. (B3)

The functions T1, T2, and L
(×)
‖ have been introduced in Eqs. (81)–(84).

The renormalization factor Zλ is identical to the one of model F [22] with all parameters of the perpendicular subsystem.
With Q defined in (88), one gets

Z
(d)
λ = 1 − 1

ε

f 2
⊥
2

{
1 + Q

2
− 1

4ε

1

w′
⊥

[
D2

⊥
1 + w⊥

+ D+2
⊥

1 + w+
⊥

]}
(B4)
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