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We analyze the entropic equation of state for a many-particle interacting system in a scale-free network.
The analysis is performed in terms of scaling functions, which are of fundamental interest in the theory of
critical phenomena and have previously been theoretically and experimentally explored in the context of various
magnetic, fluid, and superconducting systems in two and three dimensions. Here, we obtain general scaling
functions for the entropy, the constant-field heat capacity, and the isothermal magnetocaloric coefficient near the
critical point in uncorrelated scale-free networks, where the node-degree distribution exponent λ appears to be a
global variable and plays a crucial role, similar to the dimensionality d for systems on lattices. This extends the
principle of universality to systems on scale-free networks and allows quantification of the impact of fluctuations
in the network structure on critical behavior.
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I. INTRODUCTION

Phase transitions and critical behavior in complex networks
currently attract much attention [1] because of their unusual
features and broad array of applications, ranging from socio-
[2] to nanophysics [3]. It is by now well established that the
critical behavior of a many-particle interacting system located
on the nodes of a general network may crucially differ from
that of a system located on the sites of a d-dimensional regular
lattice. Of particular interest are the so-called scale-free net-
works, for which the probability to find a node of degree k (i.e.,
with k nearest neighbors) vanishes for large k as a power law,

P (k) ∼ k−λ. (1)

The questions we address in this paper concern two
fundamental principles of critical phenomena: universality and
scaling [4]. Both of these questions have to be reconsidered
when a system resides on a network. Usually, the universality
of critical phenomena is understood as stating that the ther-
modynamic properties near the critical point Tc are governed
by a small number of global features, such as dimensionality,
symmetry, and the type of interaction. In turn, the scaling
hypothesis states that the singular part of a thermodynamic
potential near Tc has the form of a generalized homogeneous
function. To be specific, for the Helmholtz potential of a
magnetic system, the latter can be written as [5]

F (τ,M) = τ 2−αf±(M/τβ), (2)

where M is the magnetization, τ = |T − Tc|/Tc, α,β are the
universal exponents, and the sign ± corresponds to T > Tc or
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T < Tc, respectively. The essence of relation (2) is that the
two-variable function F (τ,M), when appropriately rescaled,
is expressed in terms of a single scaling variable leading to the
scaling function f±(x). The expression (2) gives an example
of the scaling function for the Helmholtz potential F (τ,M).
Together with other scaling functions—for the equation of
state and for thermodynamic functions—this appears to give a
suitable and comprehensive description of critical phenomena
[6,7]. These scaling functions are also universal in the sense
explained above.

For systems on scale-free networks, the principle of univer-
sality is extended: there, the node-degree distribution exponent
λ in Eq. (1) appears to be a global variable and plays a crucial
role, similar to the dimension d for systems on lattices (see,
e.g., [8–13]). All systems that belong to a given universality
class are governed by the same values of critical exponents and
critical amplitude ratios and share the same universal form of
scaling functions. Recently, the scaling function formalism
has been applied to describe the critical behavior of magnetic
systems with the structure of uncorrelated scale-free networks
[13], that is, networks that are maximally random under the
constraint of a power-law degree distribution (1) (see [9]).
There, scaling functions for the magnetic equation of state
and isothermal susceptibility were derived. In this paper, we
are interested in the entropic form of the equation of state. In
particular, this opens the possibility to derive scaling functions
for the heat capacity. These are of wide and fundamental
interest in the theory of critical phenomena and have been
the subject of thorough theoretical and experimental studies
for various magnetic, fluid, and superconducting systems
[14–21]. A particular point of interest concerns the existence
or nonexistence of the moments of the distribution (1) and
their influence on the universal behavior.

The setup of the paper is as follows: in Sec. II, we
define the notations and derive expressions for the entropic
equation of state, heat capacity, and magnetocaloric coefficient
scaling functions for systems on scale-free networks. These
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expressions are further analyzed and compared with corre-
sponding functions for bulk systems in Sec. III. The paper
concludes with a summary and an outlook in Sec. IV.

II. FREE ENERGY AND SCALING FUNCTIONS

The critical behavior of a many-particle system interacting
on a scale-free network depends crucially on the node degree
distribution P (k) via the decay exponent λ in Eq. (1) [1]. In
particular, for an infinite network, the value of λ determines
the order of the first diverging moment, this order being the
lowest integer j � λ − 1. This is reflected by the phase-
transition scenario. For low values of λ � 3, the system
remains ordered for any finite temperature, whereas for λ > 3,
a finite-temperature, order-disorder phase transition occurs.
Moreover, critical exponents that govern a second-order phase
transition in a scale-free network attain their usual mean-field
values for high λ > 5 and demonstrate nontrivial λ dependence
in the region 3 < λ < 5. Logarithmic corrections to scaling
laws appear at λ = 5: this resembles phenomena that occur
at marginal space or order-parameter dimensions in bulk
systems [22].

A starting point for our analysis will be the expression for
the free energy of a system with scalar order parameter on
a scale-free network. To be specific, from now on we will
consider ferromagnetic ordering and the spontaneous magne-
tization M as the order parameter with the conjugate magnetic
field H . In this case, the corresponding microscopic degrees of
freedom are the Ising spins. However, generalization to models
of more complicated symmetry is straightforward [11,12]. Due
to the fact that the networks under discussion are assumed to
have a local treelike structure, the mean-field approximation
is asymptotically exact in the sense that thermal fluctuations
can be neglected. This leads to a form of the free energy also
found using other techniques. The lowest-order contributions
to the singular part of the Helmholtz free energy in the vicinity
of Tc are [8–10]

F (M,T ) = a

2
(T − Tc)M2 + b

4
M4, λ > 5, (3)

F (M,T ) = a

2
(T − Tc)M2 + b

4
Mλ−1, 3 < λ < 5. (4)

The parameters a,b > 0 and the critical temperature Tc are
λ-dependent. This dependence can be made explicit using
microscopic approaches [8,9,11] or may be postulated in a
Landau-like approach [10,12]. For the subsequent analysis,
we will absorb the parameters into the dimensions of the cor-
responding observables, passing to dimensionless quantities,

f (m,τ ) = ±τ

2
m2 + 1

4
m4, λ > 5, (5)

f (m,τ ) = ±τ

2
m2 + 1

4
mλ−1, 3 < λ < 5, (6)

with obvious relations between dimension-dependent and
dimensionless variables,

m = M/M0, τ = |T − Tc|/Tc, f = F/F0, (7)

where M2
0 = aTc/b for λ > 5, Mλ−3

0 = aTc/b for 3 < λ < 5
and F0 = aTcM

2
0 . Since τ measures the absolute distance to the

critical point, the free energy has two branches, corresponding

to signs “+” and “−” in Eqs. (5) and (6) for T > Tc and T <

Tc, respectively. It is easy to verify that a system with the free
energy (5) and (6) possesses a second-order phase transition
at τ = 0. Here, we employ the standard notation for critical
exponents governing the temperature and field dependencies of
the thermodynamic functions. For h = 0 and T → T ±

c , these
are

ch � A±τ−α, χT � �±τ−γ , mT � B±
T τ−ω (8)

while for T → T −
c , one also has

m � Bτβ. (9)

On the other hand, for τ = 0, the standard definitions are

ch ∼ Ach
−αc , h � Dcm|m|δ−1, (10)

χT � �ch
−γc , mT � Bc

T h−ωc . (11)

(See Sec. II C for the definition of the magnetocaloric
coefficient mT .) The values of these critical exponents are
summarized in Table I [8–11,13]. It is worth noting here that
one way to derive the listed exponents is to consider the naive
dimensions of different terms in the Landau free energy, similar
to the standard field theoretical procedure (see, e.g., [23]).
With the values of critical exponents at hand, one can rewrite
the singular part of the Helmholtz potential in the form of a
generalized homogeneous function (2) [4]:

f (m,τ ) = τ 2f±(x), x = m/τ
1
2 , λ > 5, (12)

f (m,τ ) = τ
λ−1
λ−3 f±(x), x = m/τ

1
λ−3 , 3 < λ < 5, (13)

where the free-energy scaling functions are given by [13]

f±(x) = ±1

2
x2 + 1

4
x4, λ > 5, (14)

f±(x) = ±1

2
x2 + 1

4
xλ−1, 3 < λ < 5. (15)

Assuming that the Helmholtz potential is a complete differen-
tial,

dF = −SdT + HdM, (16)

one can further proceed with an analysis based on the magnetic
form of the equation of state,

H = ∂F

∂M

∣∣∣
T
, (17)

or the entropic form of the equation of state [25],

S = −∂F

∂T

∣∣∣
M

. (18)

As we have noted in the Introduction, the scaling functions for
the magnetic equation of state (both in the Widom-Griffith [6]
and Stanley-Hankey [24] forms) and isothermal susceptibility
have recently been reported elsewhere [13]. Here, we will
proceed by analyzing the entropic equation of state (18) and
heat-capacity scaling functions.

In terms of dimensionless variables, Eqs. (17) and (18) take
on the form

h(m,τ ) = ∂f (m,τ )

∂m

∣∣∣
τ
, s(m,τ ) = ∓∂f (m,τ )

∂τ

∣∣∣
m

(19)
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with field h and entropy s measured in units of F0/M0 and
F0/Tc, respectively. As before, and throughout, the index ±
refers to temperatures above and below the critical point Tc.

Since the free energy (3) and (4) is explicitly a linear
function of τ , one obtains the usual mean-field result for the
heat capacity at constant magnetization:

CM = T
∂S

∂T

∣∣∣
M

= 0 . (20)

To find the dimensionless constant-magnetic-field heat capac-
ity [25],

ch = ± T

Tc

∂s(τ,m)

∂τ

∣∣∣
h

= (τ ± 1)
∂s(τ,m)

∂τ

∣∣∣
h
, (21)

one can consider the entropy as a function of magnetic field
and temperature s(τ,m(τ,h)), which leads to

ch = (τ ± 1)
[ ∂s

∂τ

∣∣∣
m

+ ∂s

∂m

∣∣∣
τ

∂m(τ,h)

∂τ

∣∣∣
h

]
. (22)

Noting from (3) and (4) that ∂s/∂m|τ = −m and ∂s/∂τ |m = 0,
one finally arrives at the expression for the heat capacity,

ch = (1 ± τ )Ch(τ,m), (23)

with the function Ch given by

Ch(τ,m) = ∓m
∂m(τ,h)

∂τ

∣∣∣
h
. (24)

Let us now consider separately the cases of fast (λ > 5) and
slower (3 < λ < 5) decay of the node degree distribution (1).

A. λ > 5

The free energy (3) leads to the expression for the entropy,

s(τ,m) = −m2

2
, (25)

which can be easily recast in a scaling form,

s(τ,m) = τS(x), (26)

where the scaling variable x = m/τβ = m/τ 1/2 and the
entropy scaling function S(x) is

S(x) = −x2

2
. (27)

To obtain the heat capacity (22), we first write the magnetic
equation of state (19),

h = ±τm + m3, (28)

and differentiate it with respect to τ to obtain

∂m

∂τ

∣∣∣
h

= ∓m

±τ + 3m2
. (29)

Substituting this into (24) leads to the representation of Ch in
the form of a generalized homogeneous function,

Ch(τ,m) = C±(x), (30)

with the scaling variable x defined above and the heat-capacity
scaling function

C±(x) = x2

3x2 ± 1
. (31)

Note that in (30), the heat-capacity exponent vanishes, α = 0.

B. 3 < λ < 5

A particular feature of the entropy of a system on a scale-
free network is that its dependence on magnetization both for
3 < λ < 5 and for λ > 5 is given by Eq. (25). In terms of the
scaling function for 3 < λ < 5, it reads

s(τ,x) = τ 2/(λ−3)S(x), (32)

where the entropy scaling function does not change and is
given by Eq. (27). The power of τ is equal to 1 − α and the
scaling variable is now

x ≡ m/τβ = m/τ 1/(λ−3). (33)

However, the magnetic equation of state (19) for the Helmholtz
function (6) becomes λ-dependent:

h = ±τm + λ − 1

4
mλ−2. (34)

As in the previous subsection, we obtain from this the
derivative ∂m/∂τ |h, and by substitution into Eq. (24) we arrive
at the representation of Ch in the form of the generalized
homogeneous function,

Ch(τ,m) = τ
5−λ
λ−3 C±(x), (35)

where the scaling variable x is given by (33) and the heat-
capacity scaling function attains a nontrivial λ dependence,

C±(x) = x2

(λ − 1)(λ − 2)

4
xλ−3 ± 1

. (36)

Note that on the basis of the scaling functions S(x) in
Eq. (27) and C±(x) in Eqs. (31) and (36), one easily obtains
the corresponding scaling functions with respect to the rescaled
magnetic field,

y ≡ h/τβδ. (37)

The connection between the variables x and y results from the
magnetic equations of state (28) and (34), and is given by

y = ±x + x3, λ > 5, (38)

y = ±x + λ − 1

4
xλ−2, 3 < λ < 5. (39)

Solving the above equations with respect to x and substituting
the result x(y) into the functions S(x) and C±(x) leads to
the scaling functions S(y) and C±(y). The behavior of the
above scaling functions will be analyzed in the next section.
These functions together with the scaling functions for the
magnetic equation of state h = τβδH±(m/τβ) and isothermal
susceptibility χT = τ−γ χ±(m/τβ) [13] are summarized in
Table II.

C. Isothermal magnetocaloric effect, λ > 3

Before we proceed with the discussion of the peculiarities
of the entropic equation of state and of the thermodynamic
functions following from it, let us introduce an additional
observable—the isothermal magnetocaloric coefficient. It
serves as a direct measure of the heat released by the system
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due to the magnetocaloric effect upon an isothermal increase
of the magnetic field and is defined as (see, e.g., [26])

MT = −T
∂M

∂T

∣∣∣
H

. (40)

In contradistinction to the heat capacity, which often does not
diverge or is a weakly divergent quantity for many 3d systems,
the magnetocaloric coefficient is frequently strongly divergent
at second-order phase transitions [20,26] and therefore it is
instructive to analyze how this behavior is modified by a scale-
free network. Using Maxwell relations, MT can be obtained
both from the magnetic or from the entropic equations of state,
Eqs. (17) and (18). Therefore, an equivalent representation to
the one given in (40) reads

MT = −T
∂S

∂H

∣∣∣
T

. (41)

Analogous to the first equation in (7), we define the dimen-
sionless isothermal magnetocaloric coefficient as

mT = MT

M0
. (42)

From the above representation, this is

mT = −(1 ± τ )
∂s(m,τ )

∂m

∣∣∣
τ

∂m(τ,h)

∂h

∣∣∣
τ
. (43)

Recognizing that the last term in (43) is a dimensionless
isothermal susceptibility χT (τ,m) and writing it in the scaling
form

χT = τ−γ χ±(x), x = m/τβ, (44)

we arrive at the scaling representation for the dimensionless
isothermal magnetocaloric coefficient mT ,

mT = (1 ± τ )τ−ωM±(x), (45)

with the scaling function

M±(x) = xχ±(x), (46)

and a scaling relation for the isothermal magnetocaloric
coefficient critical exponent ω,

ω = 1 − β . (47)

While the equality (47) is a general one and directly follows
from the scaling form of Eq. (43), the relation (46) between
functions M±(x) and χ±(x) holds only for systems where the
entropy scaling function has the simple representation (27).

As noticed above, another way to obtain mT is to start from
the magnetic equation of state using the representation (40).
Then one obtains

mT = ∓(1 ± τ )
∂m(τ,h)

∂τ

∣∣∣
h
. (48)

Comparing this expression with the formulas obtained above
for the heat capacity (23) and (24), one arrives at the relation
between the scaling functions M±(x) and C±(x),

C±(x) = xM±(x), (49)

which, in particular, leads to [cf. (46)]

C±(x) = x2χ±(x). (50)

TABLE I. Critical exponents governing temperature and field
dependencies of the thermodynamic quantities for different values
of λ.

α β γ δ ω αc γc ωc

λ � 5 0 1/2 1 3 1/2 0 2/3 1/3
3 < λ < 5 λ−5

λ−3
1

λ−3 1 λ − 2 λ−4
λ−3

λ−5
λ−2

λ−3
λ−2

λ−4
λ−2

The scaling function M±(x) defined above is displayed for
different ranges of the values of λ in Table II. For the critical
exponents ω, we get

ω = λ − 4

λ − 3
, 3 < λ < 5; ω = 1/2, λ > 5. (51)

It is easy to find the scaling relation for the critical exponent
ωc that governs the field dependence of mT (τ = 0,h) [20],

ωc = 1 − β

βδ
. (52)

The values of this exponent read

ωc = λ − 4

λ − 2
, 3 < λ < 5; ωc = 1/3, λ > 5. (53)

Thus while ch does not diverge (α < 0) for the entire range
3 < λ < 5, mT is divergent (ω > 0) over half that range 4 <

λ < 5, and is a better locator of the phase transition there. The
above calculated exponents ω, ωc are displayed together with
other exponents in the comprehensive Table I, which presents
a summary of the data concerning the temperature and field
behavior of different thermodynamic quantities in the vicinity
of the critical point for different values of λ. In the course of the
analysis of different types of critical phenomena in scale-free
networks [1], it has been revealed that the onset of divergencies
of moments of the node-degree distribution function P (k),
Eq. (1), relates to changes in the scaling scenario of these
systems. As one can see from (51) and (53), the exponents ω

and ωc change their sign to become negative for λ < 4: mT is
no longer divergent at the critical point in the region 3 < λ < 4.
Therefore, along with the two marginal values of λ = 5 and
3, which correspond to the divergencies of 〈k4〉 and 〈k2〉 and
define the “window” of nontrivial critical behavior on a scale-
free network, the divergence of the third moment of the node-
degree distribution 〈k3〉 leads to a qualitative change in the
critical behavior of the isothermal magnetocaloric coefficient.

III. DISCUSSION

As one can see from Table I, the heat-capacity exponent
α is negative in the region 3 < λ < 5 where a nontrivial
α(λ) dependence is observed. This means that the singular
part of the heat capacity ch vanishes at Tc. Taken that ch

vanishes also at T = 0 and that it is a positive smooth function
of T in between, one concludes that it has a maximum at
some temperature T0, where 0 < T0 < Tc for any 3 < λ < 5.
Therefore, the energy fluctuations are maximal at T0 (see [12]
for more details). Such behavior is a generic feature of systems
with α < 0; other examples include the three-dimensional
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TABLE II. Scaling functions and amplitude ratios near the critical
point in scale-free networks. The scaling variable is x = m/τβ . The
ratio �+/�− is taken from Ref. [12] and scaling functions f±, H±,
and χ± follow from Ref. [13].

3 < λ < 5 λ > 5

f± ±x2/2 + xλ−1/4 ±x2/2 + x4/4
H± λ−1

4 xλ−2 ± x x3 ± x

χ± 1
(λ−1)(λ−2)xλ−3/4 ± 1

1
3x2 ± 1

S −x2/2 −x2/2
C± x2

(λ−1)(λ−2)xλ−3/4 ± 1
x2

3x2 ± 1

M± x

(λ−1)(λ−2)xλ−3/4 ± 1
x

3x2 ± 1

A+/A− 0 0
�+/�− λ − 3 2
Rχ 1 1
RC 0 0

RA
1

λ−2 [ 4
λ−1 ]

λ−5
(λ−2)(λ−3) 1/3

Heisenberg and planar magnets [27], liquid helium [28], and
disordered uniaxial magnets [29]. From Eqs. (31) and (36),
one finds that ch(T > Tc,h = 0) = 0 for any λ. This leads to
the following amplitude ratio, which holds for all λ > 3:

A+/A− = 0. (54)

Amplitude ratios are known to be universal along with the
scaling functions and critical exponents (see, e.g., [7]). It
is appropriate to adduce here how these ratios change for
systems on scale-free networks. The results are summarized
in the lower part of Table II. In addition to the heat-capacity
amplitude ratio (54), the isothermal magnetic-susceptibility
amplitude ratio appears to be λ-dependent for 3 < λ < 5:
�+/�− = λ − 3 [12]. Using the expressions (28), (31), (34),
and (36), it is straightforward to find for the other amplitudes
for λ > 5,

B = Dc = 1, Ac = 1/3, (55)

and for 3 < λ < 5,

B =
( 4

λ − 1

)1/(λ−3)
, Dc = λ − 1

4
,

Ac = 1

λ − 2

( 4

λ − 1

)3/(λ−2)
. (56)

Now, defining three more amplitude ratios by [7,16,17]

Rχ = �+DcB
δ−1, (57)

Rc = A+�+/B2, (58)

RA = AcD
−(1+αc)
c B−2/β, (59)

and substituting into these ratios the amplitudes (55) and (56),
we arrive at their values for the scale-free network, as listed in
Table II.

Let us concentrate now on the scaling functions. As noted
in Sec. II, the entropy scaling function S±(x), which in the
usual Landau theory is given by Eq. (27), keeps its form also
in the case of scale-free networks with 3 < λ < 5. However,
the constant-magnetic-field heat-capacity scaling function C±
essentially changes in this region. In Fig. 1, we plot C± as
a function of the scaling variable x = m/τβ for different

C

x
108

1.0

0.0

0.5

2 40 6

FIG. 1. (Color online) Heat-capacity scaling functions C−(x)
(dotted blue curves) and C+(x) (solid red curves) as functions of the
scaling variable x = m/τβ at λ > 5, λ = 4.8, and λ = 4.5 (lower,
middle, and upper pairs of curves, respectively).

values of λ. The most striking feature in the behavior of the
scaling function is that its asymptotics for large x changes for
λ < 5. Indeed, for λ > 5 the asymptotic value is given by a
constant, C±(x → ∞) = 1/3, whereas in the range 3 < λ < 5
the function behaves as a power law,

C±(x → ∞) = 4

(λ − 1)(λ − 2)
x5−λ. (60)

In turn, this is reflected in the development of a minimum in
the C− branch of the function as λ decreases (see the figure).

Another particular feature of the plots of Fig. 1 is inherent
to the presentation of the scaling plots in the C−-x plane and is
connected to the presence of a pole in C±(x) for small x. As one
sees immediately from Eqs. (31) and (36), this pole occurs at
x = 1/

√
3 and x = {4/[(λ − 1)(λ − 2)]}1/(λ−3) for λ = 5 and

3 < λ < 5, correspondingly. However, the physical values of
the scaling variable x do not cover the region where the pole
occurs. Indeed, from the magnetic equations of state (28) and
(34), one may obtain the solutions for the magnetization at zero
magnetic field m(τ,h = 0). Taking that a nonzero magnetic

0.5

100

1.0

20

C

60
y

80

0.0

40

FIG. 2. (Color online) Heat-capacity scaling functions C−(y)
(dotted blue curves) and C+(y) (solid red curves) as functions of the
scaling variable y = h/τβδ at λ > 5, λ = 4.8, and λ = 4.5 (lower,
middle, and upper pairs of curves, respectively).
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M

6
x

104

1

0

0

2 8

FIG. 3. (Color online) Scaling functions for the isothermal
magnetocaloric coefficient. M−(x) (dotted blue curves) and M+(x)
(solid red curves) as functions of the scaling variable x = m/τβ

at λ > 5, λ = 4, and λ = 3.8 (lower, middle, and upper pairs of
curves, respectively). The decay that is observed for λ > 4 switches
to power-law growth for λ > 4. The functions approach the constant
value M± = 2/3 for λ = 4.

field must increase the value of m, one arrives at the following
minimal values of the scaling variable x:

xmin = 1, λ > 5, (61)

xmin =
( 4

λ − 1

)1/(λ−3)
, 3 < λ < 5. (62)

Therefore, the curves for the scaling function C− in Fig. 1
originate at the corresponding minimal values of x defined by
the relations (61) and (62).

In turn, as explained in Sec. II, one may reexpress the
scaling function C± in terms of the scaled magnetic field y

using Eq. (37). Corresponding plots for the scaling function
C±(y) in this variable are given in Fig. 2 for different values
of λ. Again, one observes a change in the asymptotics of the
scaling function: instead of a constant at λ > 5, for 3 < λ < 5
the asymptotic functional dependence is given by

C±(y → ∞) = 1

(λ − 2)

( 4

(λ − 1)

) 3
λ−2

y
5−λ
λ−2 . (63)

In Figs. 3 and 4, we give the plots of the scaling functions
M± for the isothermal magnetocaloric coefficient in the
scaling variables x = m/τβ and y = h/τβδ , respectively. As
discussed at the end of the previous section, mT changes its
behavior at λ = 4. This feature is also reflected in the behavior
of the scaling functions: their asymptotics changes at λ = 4.
Indeed, for λ > 5 the function decays as M±(x → ∞) ∼
1/3x, whereas from the asymptotic behavior in the region
3 < λ < 5,

M±(x → ∞) = 4

(λ − 1)(λ − 2)
x4−λ, (64)

one concludes that for λ < 4 the power-law decay switches
to a power-law growth, while M±(x → ∞) = const for the

1

60 8040
y

20

0

2

100

M

3

FIG. 4. (Color online) Isothermal magnetocaloric coefficient
scaling functions M−(y) (dotted blue curves) and M+(y) (solid red
curves) as functions of the scaling variable y = m/τβδ at λ > 5,
λ = 4, and λ = 3.8 (lower, middle, and upper pairs of curves,
respectively).

marginal value λ = 4. The corresponding asymptotics in the
variables y is of the form

M±(y → ∞) = 1

3y1/3
, λ > 5,

(65)

M±(y → ∞) = 1

(λ − 2)

( 4

(λ − 1)

) 2
λ−2

y
4−λ
λ−2 ,

3 < λ < 5 .

IV. CONCLUSIONS

Usually the universality of critical phenomena is attributed
to the presence of only a few relevant global parameters.
Different systems that share the same values of these global
variables manifest the same criticality. A classical example is
given by the famous 3d Ising model universality class that is
inherent to the critical behavior of such differing systems as
uniaxial magnets, simple fluids, or binary alloys. The critical
behavior in all these systems is quantitatively described by
the same values of the critical exponents, amplitude ratios,
and by the same form of the scaling functions. As this
paper demonstrates, in particular the usual “Euclidean space”
understanding of universality of critical phenomena breaks
down if the critical behavior occurs on a scale-free network.
The presence of high-degree vertices (hubs) may lead to
substantial changes in ordering processes. The parameter that
controls the “importance” of the hubs is the node-degree
distribution exponent λ, Eq. (1), and it is this parameter that
plays the role of a global variable as far as the critical behavior
is considered.

In particular, the universal quantities that govern criticality
become λ-dependent for small enough λ and in this way the
network structure is felt. However, the presence of magneti-
zation is necessary to “feel” the network structure. To give an
example, the structure matters for T < Tc at any h and for T >

Tc for h �= 0 (cf. that amplitude �− is λ-dependent, whereas �+
is not). Another interesting observation is that the fluctuation
in network structure only enters via the magnetization, and
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since the entropy S is measured at constant magnetization, it
is given by a usual Landau-like mean-field value for any λ > 3.
This makes a difference between the global parameters λ and
dimensionality d regarding the influence of fluctuations on
calculating the singular behavior of the physical quantities: no
renormalization-group calculation is necessary in this instance.

In this paper, we completed the quantitative description of
critical behavior in uncorrelated scale-free networks by calcu-
lating the entropic equation of state, the resulting scaling func-
tions, as well as the universal amplitude ratios. The correspond-
ing formulas, together with other data for the critical exponents
and amplitudes, are summarized in Tables I and II. They
constitute a comprehensive list of observables that describe the
scaling and characterize the criticality in scale-free networks.

The starting point for our study was the asymptotic form
of the free energy in the vicinity of a critical point in an
uncorrelated scale-free network, Eqs. (3) and (4). The validity
of this expression has been proven at different levels of
rigor using microscopic approaches based on the recursion
relations [9], the replica method [8], or phenomenological

Landau approaches [10,12] as well as mean-field theory [11].
It is instructive to note here that, because the networks under
discussion have a local treelike structure, the mean-field ap-
proximation is asymptotically exact. One of the consequences
of this fact is that the values of the exponents do not change if
an O(m)-symmetrical order parameter is considered (see, e.g.,
[12]), as is usual in the Landau theory. Another consequence
is an obvious restriction of the theory developed above to
the class of the so-called equilibrium random networks [9]:
the undirected graphs, maximally random under the constraint
that their degree distribution is a given one, Eq. (1) for the case
considered here.

ACKNOWLEDGMENTS

This work was supported by the Austrian Fonds zur
Förderung der wissenschaftlichen Forschung (Project No.
P19583-N20), the EU Programme FP7-People-2010-IRSES
(Project No 269139), and the ARF Scheme of Coventry
University. We thank J. F. F. Mendes and a referee for useful
comments.

[1] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Mod.
Phys. 80, 1275 (2008).

[2] S. Galam, Physica A 274, 132 (1999); Int. J. Mod. Phys. C
19, 409 (2008); K. Sznajd-Weron and J. Sznajd, ibid. 11, 1157
(2000); K. Sznajd-Weron, Acta Phys. Pol. B 36, 2537 (2005);
D. Stauffer and S. Solomon, Eur. Phys. J. B 57, 473 (2007);
K. Kułakowski and M. Nawojczyk, e-print arXiv:0805.3886.
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