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Star copolymers in porous environments: Scaling and its manifestations
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We consider star polymers, consisting of two different polymer species, in a solvent subject to quenched
correlated structural obstacles. We assume that the disorder is correlated with a power-law decay of the pair-
correlation function g(x) ∼ x−a . Applying the field-theoretical renormalization group approach in d dimensions,
we analyze different scenarios of scaling behavior working to first order of a double ε = 4 − d , δ = 4 − a

expansion. We discuss the influence of the correlated disorder on the resulting scaling laws and possible
manifestations such as diffusion-controlled reactions in the vicinity of absorbing traps placed on polymers
as well as the effective short-distance interaction between star copolymers.
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I. INTRODUCTION

Understanding the behavior of polymer macromolecules
in solutions in the presence of structural obstacles is of great
interest in polymer physics. The presence of defects often leads
to a large spatial inhomogeneity and may create pore spaces
of fractal structure [1]. Such situations can be encountered
in studying, e.g., polymer diffusion through microporous
membranes [2] or within colloidal solutions [3].

Solutions of polymer macromolecules in a disordered
environment are subject to intensive studies. Numerous sim-
ulations [4–9] and analytical studies [7,10–16] have focused
on the case of uncorrelated structural defects at the perco-
lation threshold of the remaining accessible sites, which is
shown to alter significantly the universal behavior of polymer
macromolecules. Recently, another special type of disorder
that displays correlations in mesoscopic scale has come to
attention. This case can be described within the framework
of a model with long-range correlated quenched defects,
considered in Refs. [17–19] in the context of magnetic phase
transitions. Here structural defects are characterized by a
pair-correlation function g(x), which in d dimensions falls
off at large distance x according to a power law:

g(x) ∼ x−a. (1)

In general, any value of 0 � a � d can be realized by defects
that form clusters of fractal dimension df = d − a [20]. For
integer dimension df these include the following special cases:
uncorrelated pointlike defects (df = 0), mutually uncorrelated
straight lines of random orientation (df = 1), and mutually
uncorrelated planes of random orientation (df = 2). The
influence of such long-range correlated defects on the universal
properties of single polymer has been analyzed within the
renormalization group approach in Refs. [21,22].

To describe the universal properties of polymer chains in
good solvents, one may, due to universality in the long chain
limit, consider the model of self-avoiding walks (SAWs) on a
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regular lattice [23,24]. In particular, the average square end-
to-end distance 〈R2

e 〉 and the number of configurations ZN of
SAWs with N steps obey, in the asymptotic limit N → ∞, the
following scaling laws:〈

R2
e

〉 ∼ N2ν, ZN ∼ R2−η−1/ν . (2)

Here the second equation shows the power law in terms of
the effective polymer size R ≡ √〈R2

e 〉 ∼ Nν , and ν and η are
universal exponents that only depend on the space dimension-
ality d. For d = 3, high-order renormalization group estimates
are [25] ν = 0.5882 ± 0.0011 and η = 0.0284 ± 0.0025.

The theory can be generalized to describe star polymers,
which consist of f linear polymer chains or SAWs, linked
together at their end points. The study of star polymers is of
great interest since they serve as building blocks of polymer
networks [26,27] and can be used to model complex polymer
micellar systems and gels [28–30]. For a single star with f

arms of N steps (monomers) each, the number of possible
configurations obeys a power law in terms of the size R of the
isolated chain of N monomers [26,27]:

ZN,f ∼ Rηf −f η2 . (3)

Here the exponents ηf are universal star exponents, depending
on the number of arms f (η1 = 0, η2 = 1/ν − 2 − η). Scaling
properties of star polymers are well studied both numerically
[31–36] and analytically [27,37–43]. It has been shown that
the presence of long-range correlated disorder may have
interesting consequences for the scaling properties of polymer
stars, such as entropic separation of polymers according to
their architecture [44].

Linking together polymers of different species, we receive
nonhomogeneous star polymers with a much richer scaling
behavior [45–48]. A particular case is the star copolymer,
consisting of polymer chains of two different species. It has
been shown [46] that the number of configurations Zf1f2 of
a copolymer star with f1 arms of species 1 and f2 arms of
species 2 scales as

Zf1f2 ∼ (R)ηf1f2 −f1η20−f2η02 , (4)
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where ηf1f2 constitutes a family of copolymer star exponents.
These exponents are universal and depend only on space
dimension d and the number of chains f1, f2, as well as three
different types of fixed points that govern the rich scaling
behavior [45]. Note that the scaling law (4) holds under the
condition that all polymer chains of both species are of the
same mean size R.

Depending on the temperature, a situation may occur
where one or more of the interchain or intrachain interactions
vanishes. Indeed, for each polymer system one finds a so-called
� temperature, at which attractive and repulsive interactions
between monomers compensate each other (see, e.g., [23,24]).
Such a polymer chain can effectively be described by a simple
random walk (RW). In this case, scaling laws [Eq. (2)] hold
with exponents: ν = 1/2, η = 0. As a result, for example, there
may be only mutual excluded-volume interactions between
chains of different species, while chains of the same species
can freely intersect. That is, some species behave effectively
like RWs. Within a copolymer star, the subset of chains of
such species builds up a substar of random walks, possibly
avoiding the second part of the star, which can be either of
random walks or self-avoiding random walks (see Fig. 1).
Cates and Witten [49] have shown that this situation can also be
interpreted as describing the absorption of diffusive particles
on polymers.

Another example where star exponents govern physical
behavior concerns the short-range interaction between cores
of star polymers in a good solvent [26,50,51]. The mean force
Ffg(r) acting on the centers of two stars with functionalities f

and g at distances of the order of corona diameter is inversely
proportional to the distance r between their cores:

Ffg(r) = kBT
�fg

r
, (5)

where kBT denotes the thermal energy and �fg is the universal
contact exponent, related to the family of exponents of star
polymers by scaling relations:

�fg = ηf + ηg − ηf +g. (6)

We are interested in generalizing this relation to the case of
copolymers and analyzing the impact of disorder on mutual
interactions between two star copolymers.

The questions of the influence of correlated disorder in
the environment on the scaling behavior of star copolymers
and the resulting consequences remain so far unresolved and
are the subject of the present study. We will also analyze the

(c)(a) (b)

FIG. 1. (Color online) Schematic representation of copolymer
stars consisting of two polymer species, denoted as green (light gray)
and black. Solid lines present species behaving like SAWs, and dashed
lines present RWs. The two different sets in each example may further
be either mutually avoiding or mutually “transparent.”

spectrum of scaling exponents, in particular, for the above-
mentioned process of trapping diffusive particles in the vicinity
of absorbing polymers in disordered environments.

The paper is organized as follows: in Sec. II we will give a
field-theoretical representation of the model Lagrangean. The
field-theoretical renormalization group method, which we use
to find the qualitative characteristics of scaling behavior, is
shortly described in Sec. 3. In Sec. 4 we discuss the results
obtained. We finish by giving conclusions and an outlook.

II. THE MODEL

Let us consider a polymer star with f arms of different
species in a solvent. We are working within the Edwards
continuous chain model [52,53], representing each chain by a
path ri(s), parameterized by 0 � s � Si , i = 1,2, . . . ,f . The
central branching point of the star is fixed at r1(0). The partition
function of the system is then defined by the path integral [27]:

Zf (Si) =
∫

D[r1, . . . ,rf ]

× exp[−Hf ]
f∏

i=2

δd (ri(0) − r1(0)). (7)

Here a multiple path integral is performed for the paths
r1, . . . ,rf , the product of δ functions reflects the starlike
configuration of f chains, each starting at the point r1(0),
and Hf is the Hamiltonian, describing the system of f

disconnected polymer chains:

Hf = 1

2

f∑
i=1

∫ Si

0
ds

(
dri(s)

ds

)2

+ 1

6

f∑
i�j=1

u0
ij

∫
drρi(r)ρj (r), (8)

where ρi(r) = ∫ Si

0 ds δd (r − ri(s)) and u0
ij is a symmetric

matrix of bare excluded-volume interactions between chains i

and j .
The continuous chain model (7) can be mapped onto a

corresponding field theory by a Laplace transform in the
Gaussian surface Si to the conjugated chemical potential
variable (mass) μ̂i [23,45]:

Ẑf (μ̂i) =
∫ ∏

b

dSj exp[−μ̂jSj ]Zf (Si). (9)

One may then show that the Hamiltonian H is related to
an m-component field theory with a Lagrangean L in the limit
m → 0:

L{ϕj ,μj } = 1

2

f∑
i=1

∫
ddx

(
μ2

i | �ϕi(x)|2 + |∇ �ϕi(x)|2)
+ 1

4!

f∑
i�j=1

u0
ij

∫
ddx ϕ2

i (x)ϕ2
j (x), (10)
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where ϕm
i = {ϕ1

i , . . . ,ϕ
m
i } and μi are bare critical masses. On

the basis of the Lagrangean (10) the one-particle irreducible
vertex functions 	(L) of the theory can be obtained:

δ

(∑
i

qi

)
	L

i1,...,iL
(qi)

=
∫

eiqi ri dr1 . . . drL

〈
ϕi1 (r1) . . . ϕiL(rL)

〉L
1PI

, (11)

where only those contributions that have nonvanishing tensor
factors in the limit m → 0 are kept.

The Laplace-transformed partition function Ẑf (μ̂i) has a
vertex part, which is defined by the insertion of the composite
operator

∏
i ϕi :

δ

⎛⎝p +
∑

j

qj

⎞⎠ 	∗f (p,q1, . . . ,qf ) =
∫

ei(pr0+qj rj )dr0dr1

. . . drf 〈ϕ1(r0) . . . ϕf (r0)ϕ1(r1) . . . ϕf (rf )〉L1PI . (12)

Let us note that we are interested in the case of a copolymer
star having f1 chains of one species and f2 of another so that
f1 + f2 = f . To keep notations simple, we will consider in the
following discussion only two fields ϕ1 and ϕ2, corresponding
to two different “species.” Thus, in (10) we have interactions
u11 and u22 between the fields of the same “species” and u12

between different fields. The composite operator in (12) has
the form of a product (ϕ1)f1 (ϕ2)f2 .

We introduce disorder into the model (10) by redefining
μ̂2

i → μ̂2
i + δμ̂i(x), where the local fluctuations δμi(x) obey

〈〈δμi(x)〉〉 = 0,

〈〈δμi(x)δμj (y)〉〉 = gij (|x − y|).
Here 〈〈· · ·〉〉 denotes the average over spatially homogeneous
and isotropic quenched disorder. The form of the pair correla-
tion function g(x) is chosen to decay with distance according
to the power law (1).

In order to average the free energy over different configu-
rations of the quenched disorder we apply the replica method
to construct an effective Lagrangean:

Leff =
∫

dx
1

2

2∑
i=1

n∑
α=1

[( �∇ �ϕα
i

)2 + μ2
i

( �ϕα
i

)2]
+

2∑
i�j=1

n∑
α=1

u0
ij

4!

( �ϕα
i

)2( �ϕα
j

)2

−
∫

dx dy

2∑
i�j=1

n∑
α,β=1

gij (|x − y|)( �ϕα
i

)2( �ϕβ

j

)2
. (13)

Here the coupling of the replicas is given by the correlation
function g(x) of Eq. (1), Greek indices denote replicas, and
the replica limit n → 0 is implied. Note that the effective
Lagrangean (13) contains information about the disorder
only via the pair-correlation function g(x). Moreover, only
the long-range behavior of this function is relevant for the
phenomena we are interested in. Therefore, different disorder
interaction potentials with the same asymptotics will lead
to the same scaling behavior of polymer stars in a good
solvent immersed in the porous medium. This is related to

the fact that any short-range contribution may be absorbed
in the excluded-volume interaction, which is known to lead to
universal behavior independent of the details of the short-range
interaction (see, e.g., Ref. [24]).

For small k, the Fourier transform g̃ij (k) of gij (x) (1) reads

g̃ij (k) ∼ v0
ij + w0

ij |k|a−d . (14)

Thus, rewriting Eq. (13) in momentum space, one obtains an
effective Lagrangean with nine bare couplings: u0

11, u0
22, u0

12,
v0

11, v0
22, v0

12, w0
11, w0

22, and w0
12. As pointed out in Ref. [14],

once the limit m,n → 0 has been taken, the u0
ij and v0

ij terms
acquire the same symmetry, and an effective Lagrangean with
couplings (u0

ij − v0
ij ≡ u0

ij ) of O(mn = 0) symmetry results.
This leads to the conclusion that weak quenched uncorrelated
disorder, i.e., the case a = d, is irrelevant for polymers. Taking
this into account, we end up with only six couplings in an
effective Lagrangean: u0

11, u0
22, u0

12, w0
11, w0

22, and w0
12. For

a < d, the momentum-dependent coupling w0
ij k

a−d has to be
taken into account. Note that g̃ij (k) must be positively definite
because it is the Fourier image of the correlation function.
Thus, we have w0

ij > 0 for small k. Note that the couplings u0
ij

should be positive; otherwise, the pure system would undergo
a first-order transition.

The resulting Lagrangean in momentum space then reads

Leff = 1

2

n∑
α=1

2∑
i=1

∑
k

(
k2 + μ2

i

)(
ϕα

i (k)
)2

+
2∑

i�j=1

∑
k1k2

k3k4

(
u0

ij

4!

n∑
α=1

δ (k1 + k2 + k3 + k4) �ϕα
i (k1)

× �ϕα
i (k2) �ϕα

j (k3) �ϕα
j (k4)

− w0
ij

4!

n∑
α,β=1

|k1+k2|a−dδ (k1 + k2 − k3 − k4)

× �ϕα
i (k1) �ϕα

i (k2) �ϕβ

j (k3) �ϕβ

j (k4)

)
. (15)

In Sec. III, we apply the field-theoretical renormalization
group approach in order to extract the scaling behavior of the
model (15).

III. RENORMALIZATION GROUP APPROACH

We apply the renormalization group (RG) method [54] in
the massive scheme, renormalizing the one-particle irreducible
vertex functions, in particular, 	(2),	(4) and 	(2,1), as well
as the vertex function 	∗(f1,f2), with a single (ϕ1)f1 (ϕ2)f2

insertion. Note that the polymer limit of a zero-component
field leads to an essential simplification: Each field ϕi , mass
μi , and coupling u0

ii renormalizes as if the other fields were
absent. The renormalized couplings uij ,wij are given by

u0
ii = μεZ−2

ϕi
Ziiuii , i = 1,2, (16)

w0
ii = μδZ−2

ϕi
Ziiwii, i = 1,2, (17)

u0
12 = μεZ−1

ϕ1
Z−1

ϕ2
Z12u12, (18)

w0
12 = μδZ−1

ϕ1
Z−1

ϕ2
Z12w12. (19)
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Here μ is a scale parameter, equal to the renormalized mass,
and parameters ε = 4 − d and δ = 4 − a. The renormalization
factors Z have the form of a power series, the coefficients of
which are calculated perturbatively order by order.

The star vertex function 	∗(f1,f2) is renormalized by a factor
Z∗f1,f2 :

Zf1/2
ϕ1

Zf2/2
ϕ2

Z∗f1,f2	
(∗f1f2) = μ(f1+f2)(ε/2−1)+4−ε. (20)

The variation of the coupling constants under renormal-
ization defines a flow in parametric space, governed by
corresponding β functions:

βuij
(uij ,wij ) = μ

d

dμ
uij , βwij

(uij ,wij ) = μ
d

dμ
wij ,

i,j = 1,2. (21)

The fixed points (FPs) of the RG transformation are given by
the solution of the system of equations:

βuij
(u∗

ij ,w
∗
ij ) = 0, βwij

(u∗
ij ,w

∗
ij ) = 0, i,j = 1,2. (22)

The stable FP, corresponding to the critical point of the system,
is defined as the fixed point where the stability matrix possesses
eigenvalues {λi} with positive real parts.

The flow of the renormalizing factors Z in turn gives rise
to RG functions ηϕi

and η∗f1f2 as follows:

μ
d

dμ
ln Zϕi

= ηϕi
(uij ,wij ), (23)

μ
d

dμ
ln Z∗f1f2 = η∗f1f2 (uij ,wij ). (24)

At the FP of the renormalization group transformation, the
function ηϕi

describes the pair-correlation function critical
exponent, while the functions η∗f1f2 define the set of exponents
for copolymer stars:

η = ηϕi
(u∗

ij ,w
∗
ij ), (25)

ηf1f2 = η∗f1f2 (u∗
ij ,w

∗
ij ). (26)

In Sec. IV, we will present expressions for the β and
η functions, together with a study of the RG flow and the
fixed points of the theory.

IV. THE RESULTS

A. Fixed points and scaling exponents

According to the renormalization group prescriptions, we
obtain the RG functions of the model (15) within a massive
scheme up to the one-loop approximation:

βuii
= −ε

[
uii − 4

3u2
iiI1

]− δ2uiiwii

[
I2 + 1

3I4
] + (2δ − ε)w2

iiI3,

(27)

βwii
= −δ

[
wii + 2

3w2
iiI2 + 2

3w2
iiI4

] + ε 2
3wiiuiiI1, i = 1,2,

(28)

βu12 = −ε
[
u12 − 2

3u2
12I1 − 1

3u12(u11 + u22)I 2
1

]
− δ

[
u12w12I2 + 1

2u12(w11 + w22)I2

+ 1
2u12(w11 + w22)I4

] + (2δ − ε)

× [
1
3w2

12I3 + 1
6w12(w11 + w2)

]
, (29)

βw12 = − δ
[
w12 + 1

3w2
12I2 + 1

3w2
iiI4

] + ε
[

1
3w12u12I1

+ 1
6w12(u11 + u22)I1 + 1

6w12(w11 + w12)I2
]
. (30)

Note that expressions for βuii
,βwii

restore the corresponding
RG functions for a single polymer chain in long-range
correlated disorder [21,22]. Here Ii are the loop-integrals:

I1 =
∫

d �q
(q2 + 1)2

,

I2 =
∫

d �q qa−d

(q2 + 1)2
,

(31)

I3 =
∫

d �q q2(a−d)

(q2 + 1)2
,

I4 = ∂

∂k2

[∫
d �q qa−d

[q + k]2 + 1

]
k2=0

.

We make the couplings dimensionless by redefining uij =
uijμ

d−4 and wij = wijμ
a−4; therefore, the loop integrals

do not explicitly contain the mass. In addition, we absorb
geometrical factors Sd , resulting from angular integration into
the couplings.

Additionally, we need the RG function η∗f1f2 (uij ,wij ),
which we find in the form

η∗f1f2 = −ε

(
u11

f1(f1 − 1)

6
I1 + u22

f2(f2 − 1)

6
I1

+ u12
f1f2

3
I1

)
+ δ

(
w11

f1(f1 − 1)

6
I2

+ w22
f2(f2 − 1)

6
I2 + w12

f1f2

3
I2

)
. (32)

The perturbative expansions for RG functions may be ana-
lyzed by two complementary approaches: either by exploiting
a double expansion in the parameters ε = 4 − d,δ = 4 − a

[17,21,22] or by fixing the values of the parameters d,a [21].
Let us note that within the one-loop approximation the latter
method cannot give reliable results [21], and we exploit the
double expansion in ε = 4 − d, δ = 4 − a for a qualitative
analysis. The resulting expressions for β and η functions read

βuii
= −εuii + 4

3u2
ii − 2uiiwii + 2

3w2
ii , (33)

βwii
= −δwii − 2

3w2
ii + 2

3uiiwii, i = 1,2, (34)

βu12 = −εu12 + 2
3u2

12 + 1
3u12(u11 + u22) − 1

2u12(w11 + w22)

−u12w12 + 1
3w2

12 + 1
6w12(w11 + w22), (35)

βw12 = −δw12 − 1
3w2

12 + 1
3u12w12

+ 1
6w12(u11 + u22) − 1

6w12(w11 + w22), (36)

η∗f1f2 = −f1(f1 − 1)

6
(u11 − w11) − f2(f2 − 1)

6
(u22 − w22)

−f1(f1 − 1)

3
u12 + f2(f2 − 1)

3
w12. (37)

Substituting Eqs. (36)–(39) into (22), we find a number of
fixed points, corresponding to different scenarios of the scaling
behavior of the model.
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TABLE I. Nontrivial fixed points of the model (15).

u∗
11 u∗

22 u∗
12 w∗

11 w∗
22 w∗

12

G 0 0 3ε

2 0 0 0

U 3ε

4 0 9ε

8 0 0 0

U
′

0 3ε

4
9ε

8 0 0 0

S 3ε

4
3ε

4
3ε

4 0 0 0

GL 0 0 3δ2

(ε−δ) 0 0 3δ(ε−2δ)
(δ−ε)

UL
3δ2

2(ε−δ) 0 9δ2

4(ε−δ)
3δ(ε−2δ)
2(δ−ε) 0 9δ(2δ−ε)

4(ε−δ)

U
′
L 0 3δ2

2(ε−δ)
9δ2

4(ε−δ) 0 3δ(ε−2δ)
2(δ−ε)

9δ(2δ−ε)
4(ε−δ)

SL
3δ2

2(ε−δ)
3δ2

2(ε−δ)
3δ2

2(ε−δ)
3δ(ε−2δ)
2(δ−ε)

3δ(ε−2δ)
2(δ−ε)

3δ(ε−2δ)
2(δ−ε)

1. Pure solution

First, let us consider the case when disorder is absent
(w11 = w22 = w12 = 0), and we recover the problem of the
so-called ternary solution of two polymer species in a good
solvent [45]. Solving the equations βuij

= 0, i,j = 1,2, we find
eight fixed points, in agreement with Refs. [46–48]. The trivial
FPs, G0(u∗

11 = u∗
22 = u∗

12 = 0), U0(u∗
11 �= 0,u∗

22 = u∗
12 = 0),

U
′
0(u∗

22 �= 0,u∗
11 = u∗

12 = 0), and S0(u∗
11 = u∗

22 �= 0,u∗
12 = 0),

describe sets of two mutually noninteracting polymer species.
More interesting are the FPs denoted as G, U , U

′
, and S,

describing two mutually interacting species; their coordinates
are given in the upper part of Table I. Corresponding values of
the exponents ηf1f2 read

ηG
f1f2

= −(f1f2)ε

2
,

ηU
f1f2

= ηU
′

f2,f1
= −f1(f1 + 3f2 − 1)ε

8
, (38)

ηS
f1f2

= −(f1 + f2)(f1 + f2 − 1)ε

8
.

Note that ηS
f1f2

just recovers the exponent of a homogeneous
polymer star with f = f1 + f2 arms. The values of these
exponents are known up to fourth order of the ε expansion
[27,55] and in the fixed d approach [46].

2. Solution in the presence of long-range correlated disorder

Next, let us turn to the disorder. Apart from the eight FPs
listed, we now have a whole set of new FPs describing two
polymer species in the case when one or both of the species feel
the presence of long-range correlated (LR) disorder. Indeed, to
find these FPs, one has to solve the system of six second-order
equations (22) with the β functions given by (33)–(36). In
principle, this may lead to 26 solutions [56]. In the remainder
of this paper, we consider only four nontrivial points, corre-
sponding to copolymer stars of mutually interacting species,
both feeling the presence of disorder, which are of foremost
interest (see Table I). These FPs describe particular situations
of two mutually interacting sets of RWs (GL), SAWs (SL),
and two interacting sets of RWs and SAWs (UL, U

′
L). Note

that due to the special form of the β functions the fixed points
with u∗

ii = 0, w∗
ii �= 0 do not exist; i.e., one cannot describe

simple random walks in the media with long-range correlated
disorder.

We are interested in the points that are stable in all coor-
dinate directions. After analyzing the stability and physical
accessibility of all the points, we come to the conclusion
that only the FPs S and SL are stable in all directions, and
their stabilities are determined by the following conditions:
(1) Fixed point S is stable for ε > 2δ, and (2) fixed point
SL is stable for δ < ε < 2δ. Although the remaining FPs
(GL, UL, and U

′
L from the Table I) are unstable, they can

be reached for δ < ε < 2δ under specific initial conditions.
In particular, GL is reachable from the initial condition u11 =
u22 = w11 = w22 = 0, UL is reachable for u22 = w22 = 0, and
U

′
L is reachable for u11 = w11 = 0. Substitution of these FPs

values into the expansion (37) results in the following estimates
for ηf1f2 :

η
GL

f1f2
= −(f1f2)δ,

η
UL

f1f2
= η

U
′
L

f2,f1
= −f1(f1 + 3f2 − 1)δ

4
, (39)

η
SL

f1f2
= −(f1 + f2)(f1 + f2 − 1)δ

4
.

Here η
SL

f1f2
gives the exponent for the homogeneous star with

f1 + f2 arms in solution in long-range correlated disorder, and
η

GL

f1f2
and η

UL

f1f2
describe f2 random walks, interacting with f1

RWs and with f1 SAWs, respectively, in long-range correlated
disorder. All this leads to a variety of new scaling behavior for
copolymer stars in a disordered medium.

B. Diffusion-limited reaction rates

Let us consider the f1-arm star polymer with arms of linear
size Rs and absorbing sites all along these arms. At the center
of the star a particular absorbing trap is placed. Free particles A

which diffuse in solution are trapped or react at these sites. We
are interested in the reaction rate kf2 of simultaneously trapping
f2 randomly walking particles A. This rate is proportional to
the averaged moments of the concentration ρ of the particles
near this trap and scales as [46–49]

kf2 ∼ 〈ρf2〉 ∼ R
−λf1f2
s . (40)

This process is an example of a so-called diffusion-limited
reaction [57,58], with the rate depending on the sum of the
diffusion coefficients of the reactants [59]. As far as the
presence of disorder lowers the diffusion coefficients [60,61],
it is predicted to lower rates of association in diffusion-
limited circumstances. It is interesting to check this prediction
analytically, analyzing the behavior of star copolymers in
long-range correlated disorder. In terms of the path integral
solution of the diffusion equation, one finds that to calculate
the rate of a reaction at the absorber that involves f2 particles
simultaneously, one needs to consider f2 RWs that end at
this point. The moments of concentration in Eq. (40) are
thus defined by a partition function of a star comprising
f2 RWs [26,27]. Finally, introducing the mutual avoidance
conditions between the absorbing star and a “star” of diffusive
particles, one ends up with the problem of calculating the
partition function of a copolymer star with two species, f1

and f2. By means of the short-chain expansion [50], the set of
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(a) (b) (c)

FIG. 2. (Color online) Three nontrivial examples of copolymer stars where the interaction is governed by contact exponents (a) �S S
f1f2 g1g2

,
(b) �U U

f1f2 g1g2
, and (c) �G G

f1f2 g1g2
.

exponents ηf1f2 in (4) can be related to the exponents λf1f2 in
(40) [46–48,62]:

λRW
f1f2

= −ηG
f1f2

,
(41)

λSAW
f1f2

= −ηU
f1f2

+ ηU
f10.

Based on these relations, the resulting values for the pure
solution read [62]

λ
RWpure

f1f2
= ε

2
f1f2,

(42)

λ
SAWpure

f1f2
= 3ε

8
f1f2.

Let us note that the case f1 = 2 corresponds to a trap located
on the chain polymer, whereas f1 = 1 corresponds to a trap
attached at the polymer extremity.

Corresponding values for the exponents defining these pro-
cesses in an environment with long-range correlated disorder
can beobtained by substituting Eq. (39) into (41):

λ
RWL

f1f2
= −η

GL

f1f2
= δf1f2,

(43)

λ
SAWL

f1f2
= −η

UL

f1f2
+ ηU

f10 = 3δ

4
f1f2.

Comparing relations (42) and (43) at fixed values ε = 1
(d = 3) and varying the parameter δ, one notes that the
presence of correlated disorder results in an increase in
the exponents λ. Moreover, the stronger the correlation of
defects is, the larger λ is. Recalling the definition (40),
we immediately conclude that, as expected, the presence of
long-range correlated disorder results in lowering the rates
of diffusion-limited reactions. The crucial point is that while
long-range correlated disorder apparently does not influence
the RW itself (there is no new fixed point with uii = 0,
wii �= 0), the fact that the absorbing polymer changes its
conformation and fractal dimension in the LR background
leads to a change of the diffusive behavior of particles being
absorbed (or catalyzed) on the polymer.

Let us analyze several particular cases:
(1) For a given f1-star absorber, i.e., a reactive site placed

at one end of an otherwise absorbing polymer, increasing the
size Rs by a factor of l changes the reaction rate to k′

f1f2
∼

(lRs)−λf1f2 , so that

k′
f1f2

/kf1f2 ∼ l−λf1f2 . (44)

Increasing the size of the polymer thus leads to a reaction rate
decrease by a factor of l−λf1f2 . Since λL

f1f2
is larger than λ

pure
f1f2

,
we conclude that the presence of long-range correlated defects

makes the reaction rate decreases more slowly as compared to
the pure solution case.

(2) For a fixed number f2 of particles to be trapped
simultaneously, the effect of attaching f ′

1 additional arms to
an f1-arm star absorber decreases the reaction rate:

kf1+f
′
1 f2

/kf1f2 ∼ R
−(λ

f1+f
′
1 f2

−λf1f2 )

s , (45)

as far as λf1+f
′
1 f2

> λf1f2 . This decrease is suppressed to some
extent in the presence of long-range correlated defects.

(3) For a given f1 star absorber an increase in the number
of particles to be trapped simultaneously results in a decrease
in the reaction rate:

kf1f2+f
′
2
/kf1f2 ∼ R

−(λ
f1f2+f

′
2
−λf1f2 )

s (46)

since λf1f2+f
′
2

> λf1f2 . Again, presence of disorder makes the
reaction rate decrease more slowly as compared to the pure
case.

C. Interaction between star copolymers

The effective interaction between two star copolymers at
short distance r between their cores can be estimated following
the scheme of Refs. [26,50,51], based on short-distance
expansion. The partition sum Zf1f2 g1g2 (r) of the two stars
with f = f1 + f2 and g = g1 + g2 arms of species 1 and 2
at small center-to-center distances r factorizes into a function
Cf1f2 g1g2 (r) and the partition function Zf1+g1 f2+g2 of the star
with f1 + g1 arms of species 1 and f2 + g2 arms of species 2,
which is formed when the cores of the two stars coincide:

Zf1f2 g1g2 (r)  Cf1f2 g1g2 (r)Zf1+g1 f2+g2 . (47)

For the function Cf1f2 g1g2 (r) it was shown [26,50] that power-
law scaling for small r holds in the form

Cf1f2 g1g2 (r)  r�f1f2 g1g2 . (48)

To find the scaling relation for this power law, we take into
account (4) and change the length scale in an invariant way by
r → �r , R → �R. Eq. (47) then can be written as

�ηf1f2 −f1η20−f2η02�ηg1g2 −g1η20−g2η02Zf1f2 g1g2 (r)

= ��f1f2 g1g2 �ηf1+g1 f2+g2 −(f1+g1)η20−(f2+g2)η02Zf1+g1 f2+g2 . (49)

Collecting powers of � provides the scaling relation for the
contact exponent:

�f1f2 g1g2 = ηf1f2 − f1η20 − f2η02 + ηg1g2 − g1η20

−g2η02 − (ηf1+g1 f2+g2 − (f1 + g1)η20

−(f2 + g2)η02)

= ηf1f2 + ηg1g2 − ηf1+g1 f2+g2 . (50)
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For two star copolymers with a distance r between their
centers the mean force Ff1f2 g1g2 (r) acting on the centers
can be derived as the gradient of the effective potential
Veff(r) = −kJ T ln[Zf1f2 g1g2 (r)/(Zf1g1Zf2g2 )]. For the force at
short distances r this results in [63]

Ff1f2 g1g2 (r) = kBT
�f1f2 g1g2

r
. (51)

For two mutually interacting star copolymers we have the
three following nontrivial situations. First, one may have two
stars, each consisting of two species (with numbers of arms f1,
f2 and g1, g2, respectively), all behaving as mutually avoiding
SAWs [see Fig. 2(a)]. This situation is equivalent to two
SAW star polymers of the same species. A second possible
situation is the interaction between two star copolymers, the
first containing f1 SAWs and f2 RWs and the other g1 SAWs
and g2 RWs [Fig. 2(b)]. Third, one may have two stars,
each consisting of two species (with f1, f2 and g1, g2 arms,
respectively), all behaving like RWs but with mutual avoidance
between the species [Fig. 2(c)]. It is easy to check that any
other case can be represented in terms of these three nontrivial
examples. E.g., putting f2 = 0 in the case corresponding to
Fig. 2(b), we obtain a homogeneous f1-arm star polymer
interacting with a star copolymer, etc.

Taking into account Eqs. (38) and (39), we find the follow-
ing contact exponents corresponding to the three nontrivial
situations described.

(1) For the pure solution,

�S S
f1f2 g1g2

= ηS
f1+f2

+ ηS
g1+g2

− ηS
f1+f2+g1+g2

= ε

4
(f1 + f2)(g1 + g2), (52)

�U U
f1f2 g1g2

= ηU
f1f2

+ ηU
g1g2

− ηU
f1+g1 f2+g2

= ε

8
(2f1g1 + 3f1g2 + 3g1f2), (53)

�G G
f1f2 g1g2

= ηG
f1f2

+ ηG
g1g2

− ηG
f1+g1 f2+g2

= ε

2
(f1g2 + f2g1). (54)

(2) With the presence of LR disorder,

�
(S S)L
f1f2 g1g2

= η
SL

f1+f2
+ η

SL

g1+g2
− η

SL

f1+f2+g1+g2

= δ

2
(f1 + f2)(g1 + g2), (55)

�
(U U )L
f1f2 g1g2

= η
UL

f1f2
+ ηUL

g1g2
− η

UL

f1+g1 f2+g2

= δ

4
(2f1g1 + 3f1g2 + 3g1f2), (56)

�
(G G)L
f1f2 g1g2

= η
GL

f1f2
+ ηGL

g1g2
− η

GL

f1+g1 f2+g2

= δ(f1g2 + f2g1). (57)

Qualitative estimates for the contact exponents in d = 3
can be found by direct substitution of ε = 1 in these relations.
To discuss the physical interpretation of these results, let us
consider Fig. 3, comparing the cases of pure lattice and LR
disorder with a = 2.2 and a = 2.7. Figure 3(a) presents the

(a)

(b)

(c)

FIG. 3. Contact exponents of interaction between a copolymer
star with f1 SAWs and f2 RWs and (a) an eight-armed star of RWs,
(b) an eight-armed star of SAWs, and (c) a copolymer star with four
arms of SAWs and four arms of RWs in d = 3. Squares: pure case
(a = 3); circles: a = 2.7; triangles: a = 2.2.
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contact exponent �U U
f1f2 0g2

governing the interaction between
a star copolymer and a homogeneous star with g2 arms of
RWs. We fix g2 = 8 and change f1 and f2 in such a way that
f1 + f2 = 8. The case f1 = 0, describing two stars of RWs,
results in zero-value contact exponents and thus the absence
of interaction. Increasing the parameter f1 (SAW component)
leads to a gradual increase in the strength of the interaction.
For f1 = 8, we have a star of SAWs interacting with a star of
RWs with maximal interaction strength. Figure 3(b) depicts
the situation of a star copolymer interacting with a star of
g1 = 8 SAWs. Again, we change f1 and f2 as above. The
case f1 = 0 describes a star of SAWs interacting with a star
of RWs and is a particular case of Fig. 3(a). Increasing f1

leads to a gradual decrease in the strength of the interaction.
For f1 = 8, we have two interacting stars of SAWs with
minimal interaction strength. Figure 3(c) depicts a situation
of two interacting star copolymers with f1, f2 and g1, g2 arms,
respectively. We fixed g1 = g2 = 4 and again changed f1 and
f2 as described. The case f1 = 0 describes a copolymer star
interacting with a star of RWs. Increasing the parameter f1

leads to a gradual increase in the strength of the interaction
until it reaches its maximal value at f1 = 8, corresponding to
the interaction between a star copolymer and a star of SAWs.
The case f1 = f2 = 4 describes the interaction between two
identical copolymer stars.

Finally, we conclude that in all situations considered,
the presence of correlated disorder leads to an increase in
the contact exponent. The stronger the correlation is (the
smaller the value of correlation parameter a), the stronger
the interaction between polymers is in such an environment.
Let us recall that the exponent �

(S S)L
f1f2 g1g2

corresponds to the
situations of two interacting homogeneous polymer stars of
f = f1 + f2 and g = g1 + g2 arms in solution in the presence
of long-range correlated disorder. This problem has previously
been analyzed [44] using a two-loop expansion series for
�

(S S)L
fg in d = 3. The quantitative estimates obtained predict

a decrease in the contact exponents with the strength of the
disorder correlations, in contrast to our present ε, δ-expansion
results. Revising the resummation as performed in [44], we
conclude that the number of terms in the two-loop expansion
is probably too small to rely on those quantitative results.

V. CONCLUSIONS

In the present paper, we have studied the scaling properties
of copolymer stars, consisting of f1 arms of polymer species 1
and f2 arms of species 2 in a solution in which one or more of

the intraspecies and interspecies interactions are found to be
at their � point, with the further complication of a disordered
environment with correlated structural defects. We assume
that the disorder is correlated with a power-law decay of the
pair-correlation function g(x) ∼ x−a at large distance x. This
type of disorder is known to be relevant for simple polymer
chains [21,22] and homogeneous polymer stars [44], and we
address the question of the scaling of copolymer stars in this
situation.

Considering the f1-arm absorbing star polymer with a
special trap placed at the center of the star where f2 free
particles (RWs) are to be trapped simultaneously, the reaction
rate of this diffusion-limited reaction is found to scale with
exponents, connected to the spectrum of critical exponents
ηf1f2 of star copolymers [49]. Such a process is an example of
a so-called diffusion-limited reaction, with the rate depending
on the sum of diffusion coefficients of the reactants. Another
example where star exponents govern physical behavior
concerns the short-range interaction between the cores of star
polymers in a good solvent. The present study aims to analyze
the impact of structural disorder in the environment on these
processes.

In the framework of the field-theoretical renormalization
group approach, we obtain estimates for the critical expo-
nents ηf1f2 up to the first order of an ε = 4 − d, δ = 4 − a

expansion, that reveal a new universality class. In particular,
this enables us to conclude that the rates of diffusion-limited
reactions are slowed down by the presence of long-range
correlated disorder. The crucial point is that while long-range
correlated disorder apparently does not influence the RWs and
thus the universal behavior of diffusion itself, the fact that
the absorbing polymer changes its conformation in the LR
background leads to a change in the rate with which particles
are absorbed (or catalyzed) on specific sites of the polymer.

The contact exponents, governing the repulsive interaction
between two star copolymers in correlated disorder, are found
to be larger than in the pure solution case. The stronger the
correlation of the defects is, the stronger the interaction is
between polymers in such a disordered environment.
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