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Abstract This paper analyses the impact of random failure or attack on
the public transit networks of London and Paris in a comparative study. In
particular we analyze how the dysfunction or removal of sets of stations or links
(rails, roads, etc.) affects the connectivity properties within these networks.
We show how accumulating dysfunction leads to emergent phenomena that
cause the transportation system to break down as a whole. Simulating different
directed attack strategies, we find minimal strategies with high impact and
identify a-priori criteria that correlate with the resilience of these networks.
To demonstrate our approach, we choose the London and Paris public transit
networks. Our quantitative analysis is performed in the frames of the complex
network theory—a methodological tool that has emerged recently as an inter-
disciplinary approach joining methods and concepts of the theory of random
graphs, percolation, and statistical physics. Our finding is that in almost all
respects Paris proves to be significantly more resilient than London due to
higher organisation. In conclusion we demonstrate that taking into account
cascading effects the network integrity is controlled for both networks by less
than 0.5% of the stations i.e. 19 for Paris and 34 for London.
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Introduction

“The traveller fared slowly on his way, who fared towards Paris from England
in the autumn of the year one thousand seven hundred and ninety-two.
More than enough of bad roads, bad equipages, and bad horses, he would
have encountered to delay him”.1 In the times when Charles Dickens wrote
these words in his famous novel, there was perhaps not too much difference
concerning the quality of transportation systems in the two cities, or reasons
that may have caused their malfunction. Historical circumstances may have
had a different impact on the development of public transit security in both
cities. However, today one might assume that on average the differences
observed between the facilities offered by transportation networks of devel-
oped countries may be small enough. Analyzing the readily available data on
these networks both with algorithms and analytical approaches we test this
assumption and quantify remaining differences.
The aim of this paper is to compare security features of highly devel-

oped contemporary public transit networks (PTN)—of two European capitals,
London and Paris. These cities were chosen as they display similarities in
their structure and historical development caused by geographical and social
reasons and further due to the particular role of the public transit facilities of
London in the wake of the 2012 Olympics. We will be interested in the impact
of both random failure and targeted attacks that may lead to dysfunction
either within the stations of the PTN or along the links (rails, roads, bridges,
etc.) that connect them. In a general approach to this problem one would
want to consider a dynamic model of the PTN including the current local
capacities and loads at the time of failure, detailed passenger destinations and
itinerary together with a full view of the PTN structure (i.e. topological and
connectivity properties of the network). In lack of availability of corresponding
data for such an approach we restrict our study to the impact of failure on
the topological and connectivity properties of the analyzed networks. This
provides a first but essential step towards understanding how vulnerabilities
may be reduced by choosing appropriate network topologies. In particular, we
will consider the static network structure of the PTNs of London and Paris
and analyze their vulnerability with respect to dysfunction due to random
failure or directed attack. As we will see below, simulating various failure
and attack scenarios even on this level illuminates significant differences and
allows for general conclusions concerning the behavior of these PTNs under
stress.

1Charles Dickens. A Tale of Two Cities. London: Penguin Classics (2003).
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The setup of this paper is as follows. In the next section we briefly describe
the general method of our analysis—complex network theory (Albert and
Barabási 2002; Dorogovtsev and Mendes 2002, 2003; Newman 2003; Watts
1999; Newman et al. 2006)—and present an overview on previous studies.
We proceed to discuss the problem of PTN vulnerability in Section “PTN
resilience: observables and attack scenarios”, where we show how this problem
is related to the percolation theory (Stauffer andAharony 1991). We introduce
observables that quantitatively measure the impact on PTNs under attack,
a problem we further analyze in Section “PTN vulnerability: quantitative
analysis” where we present a comparative analysis of the London and Paris
PTNs and the impact of failure and attacks of different nature. We discuss pos-
sible reasons for the differences observed for PTN vulnerability and propose
estimators for local and global properties that allow a priori assessment of the
degree of resilience or vulnerability of PTNs. Taking into account cascading
effects in the interplay between routes and stations we demonstrate in Section
“One step further: cascading effects” that the network integrity hinges on the
effective operation of a very small set of important stations.

A complex network model of public transit

The observation that the paths of public transit routes of a city form a
network and that this network is complex enough is part of our everyday
experience. However, the concept of complex networks has recently become
the nucleus of a new and rapidly developing field of knowledge that has its
roots in random graph theory and statistical physics (see e.g. recent reviews
(Albert and Barabási 2002; Dorogovtsev and Mendes 2002; Newman 2003)
and monographs (Watts 1999; Dorogovtsev and Mendes 2003; Newman et al.
2006)). From a mathematical point of view, a network is nothing else but a
graph defined by a set of vertexes and a set of edges or links each connecting a
pair of vertexes. Graph theory is a well-settled branch of discrete mathematics
with origins in classical works of L. Euler (Bornholdt and Schuster 2003). An
essential breakthrough and a paradigm shift in graph theory (and in particular
concerning random graphs) occurred in the 1990-ies, when particular correla-
tions were discovered in otherwise seemingly random graphs. It was realized,
that numerous natural and man-made structures may be described in terms
of networks and that these networks posses surprising properties, strikingly
different from those of the so-called classical random graph (Bollobás 1985).
Such networks are currently classified as complex networks. To name a few,
these include networks describing interacting systems of biological, ecological,
sociological or technological origins such as networks of cell metabolism,
communication, transportation, and many other forms of interaction. Complex
networks have been found to be compact structures (sometimes called small

worlds) with short distances between nodes, and a high level of correlation and
self-organization. They demonstrate extremely high resilience with respect to
random failure. However they are proven to be particularly vulnerable with
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respect to targeted attacks. Some of their statistical properties, in particular
the distribution of node degrees (the number of connections of individual
nodes) are governed by power laws. This indicates the presence of non-trivial
correlations within the structure of these systems. We set out to show that
similar properties are inherent to the PTNs of London and Paris studied in
the present work.
Recent research (Marchiori and Latora 2000; Latora and Marchiori 2001,

2002; Seaton and Hackett 2004; Angeloudis and Fisk 2006; Derrible and
Kennedy 2010a, 2011, 2010b; Sienkiewicz and Holyst 2005a, b; Zhang et al.
2006; Xu et al. 2007; Chang et al. 2007; Zhu et al. 2008; von Ferber et al. 2005,
2007, 2009) on public transit networks has produced quantitative evidence
that PTNs share general features of other transportation or transmission
networks like airport, railway, or power grid networks (Albert and Barabási
2002; Dorogovtsev and Mendes 2002; Newman 2003). These features include
evolutionary growth, optimization, and usually an embedding in two dimen-
sional (2D) space. Earlier empirical studies of PTNs in the frames of complex
network theory have often restricted the analysis to certain sub-networks of
city transit. Examples are studies of subway networks of Boston (Marchiori
and Latora 2000; Latora and Marchiori 2001, 2002; Seaton and Hackett 2004),
Vienna (Seaton and Hackett 2004) and several other cities (Angeloudis and
Fisk 2006; Derrible and Kennedy 2010a, b), as well as city bus networks in
Poland (Sienkiewicz and Holyst 2005a, b) and China (Zhang et al. 2006; Xu
et al. 2007; Chang et al. 2007; Zhu et al. 2008). However, as far as the bus-
, subway- or tram-subnetworks are not closed systems the inclusion of addi-
tional subnetworks has significant impact on the overall network properties as
has been shown for the subway and bus networks of Boston (Marchiori and
Latora 2000; Latora and Marchiori 2001, 2002). Therefore, further analysis of
PTNs has included the full set of subnetworks (von Ferber et al. 2005, 2007,
2009).
The two PTNs analyzed within the present work are either operated by a

single operator (Traffic for London, TFL) or by a small number of operators
with a coordinated schedule (three operators for Paris), as expressed by a
central web site from which our data was obtained.2 The analyzed PTN of
London covers the metropolitan area of ‘Greater London’ and includes buses,
subway, and tram. Correspondingly, the PTN of Paris as analyzed here covers
the metropolitan area ’aire urbaine’ and comprises buses, RER and subway.
Some characteristics of these networks are given in Table 1. There is a number
of different ways to represent a PTN in the form of a graph (Marchiori and
Latora 2000; Latora and Marchiori 2001, 2002; Seaton and Hackett 2004;
Angeloudis and Fisk 2006; Derrible and Kennedy 2010a, b, 2011; Sienkiewicz
and Holyst 2005a, b; Zhang et al. 2006; Xu et al. 2007; Chang et al. 2007; Zhu
et al. 2008; von Ferber et al. 2005, 2007, 2009; Holovatch 2011). In what follows
below, we will mostly use the so-called L-space representation (Marchiori

2See von Ferber et al. (2005, 2007, 2009) for more details on the database.
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Table 1 Characteristics of the PTNs analyzed in this study.

City N R 〈k〉 ℓmax 〈ℓ〉 C CB κ(z) κ(k) γ

London 10,937 922 2.60 107 26.5 320.6 1.4·10
5 1.87 3.22 4.48

Paris 3,728 251 3.73 28 6.4 78.5 1.0·10
4 5.32 6.93 2.62

N: number of stations; R: number of routes. Given characteristics are: 〈k〉 (mean node degree);
ℓmax, 〈ℓ〉 (maximal and mean shortest path length); C (relation of the mean clustering coefficient
to that of the classical random graph of equal size, Eq. 3); CB: betweenness centrality (Eq. 5); κ

(z),
κ(k) (c.f. Eqs. 11, 9); degree distribution exponent γ (Eq. 4). Additional details may be found in
von Ferber et al. (2005, 2007, 2009).

and Latora 2000; Latora and Marchiori 2001, 2002; Sienkiewicz and Holyst
2005a, b; von Ferber et al. 2005, 2007, 2009), where each public transit station
is represented by a vertex (node) and any two stations serviced successively
by at least one route are connected by an edge (link). In this representation
the obtained graph—a complex network—is most similar to the PTN map.3

Typical measures for the ’diameter’ of the network are the maximal or the
mean shortest path lengths ℓmax and 〈ℓ〉. The latter is defined by:

〈ℓ〉 =
2

N(N − 1)

∑
i> j∈N

ℓ(i, j), (1)

where N is the number of network nodes, ℓ(i, j) is the length of a shortest
path (in terms of station intervals traveled) between nodes i and j and the sum
spans all pairs i, j of sites that belong to the network N . The comparatively
low values of 〈ℓ〉 found for the two PTNs (see Table 1) may be related to their
small world structure (where 〈ℓ〉 shows logarithmic growth with the number of
nodes) (von Ferber et al. 2005, 2007, 2009). The fact that the London PTN has
a larger value ℓmax corresponds to the larger area covered by the network (as
seen, e.g. from larger number of routes and stations).
The mean and maximal shortest path lengths characterize the network as

a whole and sometimes are referred to as global properties of the network.
An example of a local property is given by the node degree ki, the number of
links that are connected to the node i. By definition, it is equal to the number
of nodes adjacent to the given one and defines the neighborhood size of this
node. Obviously, not all neighbors of the node i need to be neighbors of each
other. This property is measured by the clustering coef f icient:

Ci =
2yi

ki(ki − 1)
, ki ≥ 2, (2)

where yi is the number of links between the neighbors of node i and Ci = 0 for
ki = 0, 1. In general, clustering reflects a specific form of correlation present
in a network: the clustering coefficient of a node may also be interpreted as
the probability of any two of its neighbors to be connected. A useful numerical
indicator is given by the ratio of the mean clustering coefficient of a network to

3Note, however that multiple links are absent in this graph.
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the corresponding value for the classical Erdös–Rényi random graph of equal
size:

C = 〈Ci〉/CER. (3)

Here, CER = 2M/N2 where the classical Erdös–Rényi random graph is con-
structed by randomly linking N nodes by M links (Albert and Barabási 2002;
Dorogovtsev and Mendes 2002, 2003; Newman 2003; Watts 1999; Newman
et al. 2006). Therefore, the high values of C found in Table 1 for London
and Paris indicate strong local correlations in these networks. Moreover, the
London PTN appears locally to be stronger correlated than that of Paris.
Another striking difference between the properties of random graphs and

the PTNs considered here is the behavior of the node-degree distribution P(k),
the probability that an arbitrary node is of degree k. The random graph is
characterized by a Poisson distribution which decays exponentially for large
k (Albert and Barabási 2002; Dorogovtsev and Mendes 2002, 2003; Newman
2003; Watts 1999; Newman et al. 2006). The empirically observed distributions
for the London and Paris PTNs however show a decay best described by a
power law (von Ferber et al. 2005, 2007, 2009):

P(k) ∼ k−γ , k ≫ 1. (4)

The power law decay (Eq. 4) indicates scale-free properties of the London and
Paris PTNs. It is instructive to note that the exponent γ governing this decay
is much smaller for the PTN of Paris, see Table 1. As we will show this has
important impact on the observed resilience of the network.
To some extent, the node degree may be considered as a local measure of

the importance of the node: it is intuitively reasonable that hubs (nodes with a
high degree) play an essential role in networks. The importance of a node with
respect to the connectivity between other nodes of the network, however, is
more efficiently measured by the so-called betweenness centrality. For a given
node i, the latter measures the overall share of shortest paths between pairs of
other nodes that pass through this node. The betweenness of node i may be
calculated as:

CB(i) =
∑

j6=i 6=k∈N

σ jk(i)

σ jk

(5)

where σ jk is the number of shortest paths between nodes j and k of the network
N and σ jk(i) is the number of these paths that go via node i. Numerical values
of the mean betweenness are given in Table 1 for both PTNs.

PTN resilience: observables and attack scenarios

The impact on complex network behavior upon removal of either their nodes
or links is closely related to so-called lattice percolation phenomena (Stauffer
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and Aharony 1991). The latter occurs on homogeneous structures (lattices)
whereas the non-homogeneity of complex networks gives rise to a variety
of phenomena specific to these structures. The empirical analysis of scale-
free real-world networks has shown that these networks display unexpectedly
high degrees of robustness under random failure (Albert and Barabási 2002;
Dorogovtsev and Mendes 2002, 2003; Newman 2003; Watts 1999; Newman
et al. 2006). However they may be particularly vulnerable to attacks, that
target important nodes or links. As we have seen in the previous section, both
the London and the Paris PTN share common features of complex networks.
Therefore, we may expect their behavior under stress or attack to be similar.
The first property a transit network trivially needs to fulfil is overall connec-

tivity: there must be a path within the network between any two nodes. Upon
failure of a smaller or larger set of nodes this overall connectivity may get
lost. Generally one considers a network to remain functional if a significantly
large connected component (sometimes called a spanning cluster) remains
connected.
The phenomenon of the appearance and nature of such spanning clusters is

at the center of a well established field of Statistical Physics: percolation theory

(Stauffer and Aharony 1991). Originally it describes the emergence of such
spanning clusters on a lattice at a certain threshold for the concentration cperc
of links or nodes present on the lattice and predicts universal properties that
may be observed and calculated within the theory with high precision.
On a lattice, the appearance of a spanning cluster signals the onset of

percolation at a particular concentration cperc of lattice occupation. In turn,
the probability that an arbitrary chosen lattice site belongs to the spanning
cluster is naturally used as an order parameter: it is equal one for c = 1, zero
for c < cperc and follows universal behavior as c approaches cperc from above.
A similar percolation phenomenon occurs when a giant connected component

emerges on an idealized complex network. The giant connected component is
understood as a connected subnetwork which in the limit of an infinite network
contains a finite fraction of the network. As far as real world networks are
finite, the giant component is not well defined. Instead we will observe the
size N1(c) of the largest connected component in the network to monitor the
behavior of the network as function of the share c of nodes or links that are
removed in sequence. For convenience we define the relative size (or share) of
the largest component as the ratio of N1(c) to N, the number of nodes in the
initial unperturbed network:

S(c) = N1(c)/N. (6)

Another variable that may be used to monitor changes in network structure as
nodes or links are removed is the mean inverse shortest path length (Holme
et al. 2002):

〈ℓ−1〉 =
2

N(N − 1)

∑
i> j∈N

ℓ−1(i, j). (7)
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Here, as in Eq. 1, ℓ(i, j) is the shortest path between nodes i and j that
belong to the network N . Note however, that while Eq. 1 is ill-defined for the
disconnected network, the quantity (7) is well-defined as far as ℓ−1(i, j) = 0 if
nodes i, j are disconnected. It may therefore be used to trace impact on the
network under attack.
In Fig. 1a and b we show the behavior of S and 〈ℓ−1〉 for the PTNs of

London and Paris as function of the share of removed nodes c, as these are
removed at random. Already this simple random approach to probe the PTN
behavior under attack shows a higher vulnerability of the London PTN to
random removal of its nodes: both the S- and 〈ℓ−1〉-curves indicate a faster
decay in the case of the London PTN.Moreover, the S-curve for the Paris PTN
decays almost linearly. This indicates that sub-clusters less connected to the
overall network are almost absent. The size of the largest component decreases
only due to the removed nodes. This observation will be further quantified
in the next section. Here, we want to support it by displaying the maximal
shortest path length behavior, Fig. 1c. As a matter of fact, ℓmax manifests very
different behavior for these two PTN. For the London PTN, ℓmax grows initially
and then, when a certain threshold is reached (c ∼ 0.14) it abruptly decreases.
Obviously, removing the nodes initially increases the path lengths as deviations
from the original shortest paths need to be taken into account. At some point,
removing further nodes then leads to a breakup of the network into smaller
components on which the paths are naturally limited which explains the sudden
decrease of their lengths. Such peculiarities in the behavior of ℓmax are almost
absent for the Paris PTN, at least for small and medium values of c.
Note, that the plots of Fig. 1 display the results of a single random sequence

of node removal. However, as we have checked statistics over large numbers of
random attack sequences (Holovatch 2011; Berche et al. 2009, 2010), the large
PTN size leads to a ’self-averaging’ effect: averaging over many random attack
sequences gives results almost identical to those presented in Fig. 1. To further
analyze the PTN attack vulnerability, we have made a series of computer
simulations removing PTN nodes and links not at random, but ordering
them according to their importance with respect to network connectivity:
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Fig. 1 Share of the largest component S a, mean inverse 〈ℓ−1〉 b and maximal ℓmax c shortest path
length as function of the removed share c of nodes for the PTN of London (light green curve) and
Paris (dark red curve). Random removal of PTN nodes
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scenarios we call attack or directed attack. To order these we use the already
mentioned properties such as node degree, betweenness centrality (Eq. 5),
clustering coefficient (2) and several other indicators (see Holovatch 2011;
Berche et al. 2009, 2010). Another attack scenario that has proven successful
in immunization problems on complex networks (Cohen et al. 2003) consists
in removing of a randomly chosen neighbor of a randomly chosen node. Its
efficiency is based on the fact, that in this way nodes with a high number of
neighbors will be selected with higher probability. Each of the above described
scenarios (except for the random ones) was realized for the lists prepared for
the initial network or lists rebuilt by recalculating the order of the remaining
nodes after each step. The latter way is known to be usually more efficient and
leads to slightly different results suggesting that the network structure changes
in the course of the attack (Holme et al. 2002; Girvan and Newman 2002).
In Fig. 2 we show the relative size of the largest component of the London

and Paris PTNs as function of the share of nodes removed following specific
attack scenarios described above. More specifically, nodes were removed in
chunks of 1 % of the initial nodes and a recalculation took place after the
removal of each 1% chunk of nodes. As may be drawn from a first glance at
the plots, the most harmful are attacks targeted on the nodes of highest node
degree and highest betweenness. We will discuss these in more detail in the

RV [P]

RV [L]

RN [P]

RN [L]

k [P]

k [L]
CB [P]

CB [L]

c

S

Fig. 2 Relative size S of the largest component of the London and Paris PTNs as function of the
share c of removed nodes either chosen at random, or ordered by decreasing node degree k or
betweenness CB centrality. The lists were rebuilt by recalculating the order of the remaining nodes
after each step.RV (RN): random removal of a node (or of its randomly chosen neighbor). A letter
in square brackets refers to the London [L] or Paris [P] PTN
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next section, complementing the picture of node-targeted attacks by that of
attacks that target PTN links.

PTN vulnerability: quantitative analysis

In what follows we discuss in some detail those attacks that have highest impact
on the two PTNs and compare these with the random attack scenario. To this
end, we introduce indicators that quantify PTN resilience (Schneider et al.
2011a, b; Berche et al. 2012). Furthermore, we seek correlations between PTN
resilience and network characteristics that may be measured independently.
We apply this scheme to both node-targeted attacks (Section “Node-targeted
attacks”) and link-targeted attacks (Section “Link-targeted attacks”).

Node-targeted attacks

As clearly seen from Fig. 2, if nodes are removed ordered by decreasing degree
or betweenness centrality the size S of the largest component decreases fast
and S is near zero at a share of removed nodes c ∼ 0.2 ÷ 0.3. In Fig. 3 we
further detail this picture giving plots for the size of the largest component S,
mean inverse 〈ℓ−1〉 and maximal ℓmax shortest path lengths as function of the
removed node share c for the highest node degree (figures a–c) and the highest
betweenness centrality (figures d–f) scenarios. Let us compare these with the
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Fig. 3 Share of the largest component S, mean inverse 〈ℓ−1〉 and maximal ℓmax shortest path
length as function of the removed nodes share c for PTN of London (light green curve) and Paris
(dark red curve). a, b, c: highest node degree scenario. d, e, f: highest betweenness centrality
scenario
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corresponding plots of Fig. 1, where the impact of random node removal is
shown. We observe that for these directed attack scenarios the behavior of
both PTNs is not as different as it was observed for the random scenario.
Although for the highest node degree scenario both S(c) and 〈ℓ−1(c)〉 curves
manifest a faster decay for the London PTN (see Fig. 3a and b), the difference
is less pronounced in the case of the highest betweenness centrality scenario
(Fig. 3d and e). The similarity in the performance of both PTNs with respect
to such attacks is also obvious in the behavior of the maximal shortest path
length ℓmax. For both London and Paris PTNs one observes a pronounced
peak in ℓmax(c) at c ∼ 0.06 and c ∼ 0.1 with further, smaller peaks occurring
with irregular periodicity indicating the existence of sub-clusters within both
networks.
The above comparison of the PTN attack vulnerability is as it stands

mostly qualitative. To proceed further with a quantitative analysis, a numerical
measure of resilience needs to be defined. In percolation theory, where a
spanning cluster occurs abruptly at a given percolation concentration cperc, the
latter may be used as such a measure. In the case of real-world networks of
finite size one rather observes a region of concentrations where the emergent
behavior of fast decay occurs. In some studies a characteristic concentration
value based on particular behavior of either S, 〈ℓ〉, 〈ℓ−1〉 or ℓmax has been
used to identify network breakdown (Holme et al. 2002; Berche et al. 2009,
2010). Here, we focus on the behavior of the largest component of the PTN
and follow Schneider et al. (2011a, b) to introduce a measure that integrates
the network reaction over the whole attack sequence. If S(c) is the normalized
size of the largest component as function of concentration c, we calculate the
area A below the S(c) curve as:

A = 100

∫
1

0

S(c)dc, (8)

and use this as a measure of network resilience. As follows from the definition
(Eq. 8), the measure captures the effects on the network over the complete
attack sequence and it is a characteristic measure, well-defined for finite-size
networks. The larger the measure A, the more resilient is the network.
In the left part of Table 2 we give the resilience A for the highest node

degree and highest betweenness scenarios and compare with the random

Table 2 Resilience measure A, Eq. 8, for the PTNs of London and Paris.

City Node-targeted attacks Link-targeted attacks

RV k CB RL k(l) C
(l)
B

London 29.31 5.45 8.71 27.45 20.95 27.2
Paris 37.93 10.77 10.67 56.04 47.12 55.93

Columns 2–4 give the value of A for node-targeted attacks, columns 5–7 give A for link-targeted
attacks. See the text for attack scenario descriptions.
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scenario. As follows from the table, in almost all instances the Paris PTN shows
higher resilience A than the London PTN. Another conclusion concerns the
difference between the value of A for the random attack (RV) and for attacks
that target specific important nodes (with high degree k or high betweenness
centrality CB): as often observed for complex networks, they are robust with
respect to random removal of nodes or links but especially vulnerable to
targeted attacks. Naturally the question arises whether such result may be
anticipated a priori: can one derive some criteria for PTN resilience prior to
the attack? Indeed, the data of Table 1 where information about initial PTN
characteristics is summarized allows to at least qualitatively prognosticate the
outcome of attacks as summarized in Table 2. For an explanation, let us shortly
recall several facts drawn from complex network theory.
For uncorrelated infinite random networks it has been shown (Molloy

and Reed 1995, 1998; Cohen et al. 2000; Callaway et al. 2000), that a giant
connected component is present if the following ratio of moments of the degree
distribution

κ (k) = 〈k2〉/〈k〉, (9)

is greater than two,

κ (k) ≥ 2. (10)

Relation (10) is often referred to as theMolloy–Reed criterion and κ (k) is called
the Molloy–Reed parameter.
It has been illustrated for many real-world PTN (Holovatch 2011; Berche

et al. 2009, 2010, 2012), that the value of the Molloy–Reed parameter for
the unperturbed network may be used to estimate network resilience against
attack. Typically, networks with low κ (k) appear to be more vulnerable to
both random and node degree-targeted attacks. This observation is further
supported by monitoring other related parameters, such as the ratio of the
mean number z2 of second neighbors to the mean number z1 of neighbors:

4

κ (z) = z2/z1. (11)

It is easy show that κ (k) = κ (z) + 1 for uncorrelated networks. As we have seen
from the analysis of Section “A complex network model of public transit”,
strong correlations are present in the PTN and one may not expect a simple
relation between parameters κ (k) and κ (z) to hold. However, a comparison of
κ (z) for two given networks will provide additional information about their
relative resilience.
We have calculated values of κ (k) and κ (z) for the London and Paris PTNs

and give them in the ninth and tenth columns of Table 1. The corresponding
values for the Paris PTN exceed those for London by a factor of two giving
a clear signal for a higher vulnerability of the London PTN to random failure.

4By definition z1 is equal to the mean node degree 〈k〉.
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This conclusion has been empirically demonstrated in our simulations reported
above.
The higher potential for resilient behavior of the Paris PTN with respect

to that of London may also be related to its node-degree distribution. In the
last column of Table 1 we list the exponent γ , that controls the decay of this
distribution. The smaller value of γ for Paris PTN corresponds to the fat-tailed
node-degree distribution P(k). For an infinite network, the giant connected
component is always present for the random attack scenario as long as γ <

3 (Callaway et al. 2000) and a smaller values of γ indicate higher network
resilience.
Our analysis has so far described attacks on the network nodes. Before

passing to general conclusions, let us further analyze the impact of link-
targeted attacks on the two PTNs.

Link-targeted attacks

Considering link-targeted attacks we concentrate here on those scenarios
that have proven to be most harmful for node-targeted variants, namely
removing links with highest degree and highest betweenness centrality. Our
aim is to check how resilient the two PTNs are to attacks on links following
the corresponding scenarios. However, to proceed we need to generalize the
notions of degree and betweenness for the case of links. We define the degree
k(l) of the link between nodes i and jwith degrees ki and kj as (Holovatch 2011;
Berche et al. 2012):

k
(l)
ij = ki + k j − 2. (12)

With this definition, the link degree is k(l) = 0 for a graph with two vertices
and a single link, while for any link in a connected graph with more than
two vertices the link degree will be at least one, k(l) ≥ 1. The generalization
of betweenness centrality for a link e is straightforward:

C
(l)
B (e) =

∑
s 6=t∈N

σst(e)

σst

, (13)

where σst is the number of shortest paths between the two nodes s, t ∈ N ,
that belong to the network N , and σst(e) is the number of shortest paths
between nodes s and t that go through the link e (c.f. formula (5) for the node

betweenness centrality). By definition, C(l)
B (e) measures the importance of a

link e with respect to the connectivity between the nodes of the network.
Figure 4 shows the results of our simulations for three different attack

scenarios, where the PTN links are removed at random (RL) or according to
lists ordered by decreasing link degrees and link betweenness centrality. As
in the case of node-targeted attacks these lists were recalculated after each
step of 1% of link removal. The figure shows the relative size of the largest
component of the PTN as function of the share of removed links. Let us first
note that the removal of a link does not necessarily lead to a decrease in S.
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RL [P]
RL [L]

k(e) [P]
k(e) [L]

CB(e) [P]
CB(e) [L]

c

S

Fig. 4 Relative size of the largest component of the Paris and London PTNs for different link
attack scenarios. RL: random removal of a link, k(e), CB(e): highest link degree and highest link
betweenness scenarios. Here, the links (not the nodes) are removed. Hence, c denotes the share
of removed links. As in Fig. 2, a letter in square brackets refer to the London [L] or Paris [P] PTN

Indeed, as we see from the figure S may remain unchanged for small enough
values of c, depending on the attack scenario. This is different from the node-
targeted attacks, where the removal of a node decreases the size of S at least by
the relative share of this node. In this respect, the most particular behavior is
observed for the highest link degree scenario (red curves in Fig. 4). The value
of S first remains practically unchanged (up to a concentration of removed
links c ∼ 0.08 for London PTN and even c ∼ 0.36 for Paris PTN) and then
abruptly decreases almost to zero. This behavior however is an artifact of
the recalculated link degree scenario: after removal of the top 1% of links
linked to highest degree nodes these nodes may remain connected and will
in general not be targeted in the next step after recalculation. Therefore many
steps are needed to strip these nodes off all their links. To further quantify the
impact of different scenarios we have calculated the value of the resilience
measure A, introduced in the previous section, see Eq. 8. We present the
results for all three scenarios in Table 2. As shown in the table, almost for
all link-targeted scenarios the value of A is almost twice as large for the Paris
PTN in comparison with the London PTN. Another obvious observation is
that different scenarios applied to the same PTN lead to similar values of A.
Returning back to Fig. 4 it is obvious that not only the resilience measure A but
also the S(c) curves demonstrate very similar behavior following both random
and link betweenness scenarios.
Based on the above simulated attack scenarios we observe that under

almost all of these the London PTN appears to be more vulnerable than
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the Paris PTN. One may therefore ask if there are a-priori criteria that may
indicate network resilience prior to any (simulated) attack. In former analysis
(Holovatch 2011; Berche et al. 2012) we found, that a useful criterion for
resilience of PTNs with respect to link-targeted attacks is the mean node
degree 〈k〉 of the unperturbed network. Typically, networks with a highermean
node degree are more resilient. Furthermore, in a recent study on the link-
targeted resilience of fourteen different PTNs of major cities (Holovatch 2011;
Berche et al. 2012), the resilience measure A was found to almost linearly
increase with 〈k〉. This appears to indicate that network (link) resilience
depends primarily on the initial ’density’ of network links, almost independent
of possible correlations within the PTN structure. To some extent this is
different to the criteria discussed in the former subsection for the node-
targeted attacks, where the correlations were considered involving the second
moment of the node degree distribution 〈k2〉 that enters the Molloy–Reed
parameters (9), (11). Comparing 〈k〉 for the two unperturbed PTNs (Table
1) one can see that its value for the Paris PTN exceeds that for the London
almost by 1.4 times (2.60 for London and 3.73 for Paris, see the table). This
observation may be taken as another indicator for a correspondingly higher
resilience of the Paris PTN.

One step further: cascading effects

The approaches to network attack as described in the previous sections assume
that any attack on a given station will in first place affect the attacked station
and the links to its direct neighbors within the network. The operation of all
traffic on the transit network is in this view unaffected on all other links and
nodes within the network. This implies some non-realistic situations: e.g. if a
subway station X on the London tube ceases to function the model assumes
that all routes that would otherwise pass through that station will be split into
two halves that continue to function as normal on the remaining parts of that
route. Obviously this will in general not happen and instead the route as a
whole will cease to operate or at least be seriously reduced in its function.
We therefore embark in this final section to explore the impact of attacks

on the network including the cascading effects on all routes that service the
attacked station in assuming that all routes that service that station will cease
to operate.
This task may be considerably simplified by re-interpreting the network

in terms of a so-called bipartite graph. The procedure is illustrated in Fig. 5.
Every route is represented by a square vertex connected to the nodes of all
its stations, see Fig. 5a and b. In a further simplifying step we weed out all
stations that are connected to a single route only, as they do not contribute to
the connectivity of the network, see Fig. 5c.
Within this bipartite network we identify the station node with highest be-

tweenness following the same procedure as above. That node and all adjacent
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Fig. 5 (a) A graph with three routes, each shown in a separate color; (b) the corresponding
bipartite graph—route nodes are depicted as square boxes; (c) the weeded graph without dangling
station nodes

routes are then removed—as will all station nodes that become disconnected
in this process.
The latter step is repeated until the largest connected component in the

remaining network is smaller than half of the original bipartite graph indicating
complete breakdown of the network.
Following this procedure we find that both the Paris and the London

network reach the 50% breakdown point when only 0.47% of the total stations
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Fig. 6 The break down of the connected component of the London (light yellow) and Paris (dark

blue) PTN under cascading effects, see the text for the attack scenario. For each step of the attack
we depict the corresponding station with highest betweenness that is subsequently removed. The
axis on the left indicates the remaining percentage of the connected part of the network
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become dysfunctional. This corresponds to 34 stations of the London PTN
and 19 stations of the Paris network. Figure 6 depicts the break down of
the connected component of the network. For each step of the procedure we
depict the corresponding station with highest betweenness that is subsequently
removed. The axis on the left indicates the remaining percentage of the
connected part of the network. We close by noting that on an operational basis
the network may break down even much earlier, than predicted by our theory
as far as the load to be transferred to the remaining routes will exceed by far
the capacity of these at an even lower number of dysfunctional routes.
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