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We study a stability boundary of a region where nontrivial critical behavior of an n-vector model with long-
range power-law decaying interactions is induced by the presence of a structural disorder (e.g., weak quenched 
dilution). This boundary is given by the marginal dimension of the order parameter nc dependent on space di-
mension, d, and a control parameter of the interaction decay, σ, below which the model belongs to the new dilu-
tion-induced universality class. Exploiting the Harris criterion and recent field theoretical renormalization group 
results for the pure model with long-range interactions, we get nc as a three loop ε = 2σ – d-expansion. 
We provide numerical values for nc applying series resummation methods. Our results show that not only 
the Ising systems (n = 1) can belong to the new disorder-induced long-range universality class at d = 2 and 3. 
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1. Introduction 

Year 2022 marks the 110th birth anniversary of Olek-
sandr (a.k.a. A.S.) Davydov, an outstanding physicist, known 
for his seminal contributions in the fields of solid state 
theory, nuclear physics and biophysics, for many years he 
served as a director of the Bogolyubov Institute for Theoret-
ical Physics in Kyiv. The authors of this paper who studied 
physics also from O. Davydov’s books [1–3] consider as 
a great honor to contribute to the Festschrift prepared on 
this occasion. In our paper, we use the perturbative field 
theoretical renormalization approach refined by the resum-
mation of asymptotic series expansions to study universal 
features of criticality. Although such problems were beyond 
the focus of attention of O. Davydov, the concepts called 
for their analysis: Symmetry, Space dimension, Range of 
interaction belong to the central ones in physics. In the pa-
per, we show how their interplay defines universal features 
of one of the key models currently used to understand 
qualitatively and to describe quantitatively the critical be-
havior in condensed matter and beyond. Therefore, con-
ceptually the results presented in this paper are related to 
those discussed in O. Davydov’s seminal works. For this 
reason, we have chosen to present these results here. 

Since interparticle forces in various physical, chemical, 
and biological systems are often of a long-range nature, 
models with long-range interaction attract much attention. 
They have found their applications in studies of gravita-
tional, dipolar, cold Coulomb systems, problems in plasma, 
atomic and nuclear physics, hydrodynamics and geophysi-
cal fluid mechanics (see [4–6] and references therein). Sys-
tems with long-range interactions possess properties that 
differ from those with short-range interactions. To give an 
example, even weak long-range interactions effectively 
modify the critical properties and may induce the long-
range order in one-dimensional systems [5, 6]. 

In this paper, we will discuss possible changes in the cri-
tical behavior of a many-particle system caused by mutual 
effects of long-range interactions and structural disorder. To 
this end, we will consider the now standard n-vector spin 
model with the Hamiltonian 

 
,

1= (| |)
2

J ′
′

′− −∑ x x
x x

x x S S=  (1) 

that describes a system of classical n-component vectors 
(“spins”) 1 2= ( , , , , )nS S Sx x x xS   located at sites x of a d-di-
mensional lattice and interacting via the distance-depen-
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dent potential ( )J x . The r.h.s of Eq. (1) contains a scalar 
product of spins and the sums over , ′x x  span all lattice 
sites. Influence of long-range interactions on the critical 
behavior is usually exemplified by the power-law decaying 
interaction: 

 ( ) ,dJ x x− −σ
−  (2) 

where > 0σ  is a control parameter of the interaction decay. 
As we discuss in more details below, in the case of 

a regular (nondisordered) lattices, the critical behavior of 
the model (1) is governed by the triple of parameters 
( , , )d n σ : depending on their values, the model may mani-
fest a low-temperature long-range order that emerges as 
a second-order phase transition. As long as the model Hamil-
tonian (1) is formulated in terms of elementary magnets — 
“spins”, the long-range ordered phase is usually associated 
with an emergence of spontaneous magnetization. We will 
use such magnetic terminology too, however, let us note 
that the model itself as well as our discussion without the 
loss of generality concern much more wide range of types 
of ordering [7, 8] in physics and beyond. The transition to 
the ordered “magnetic” phase is characterized by certain 
universal (i.e., independent on specific system details) fea-
tures. It is said to belong to a certain universality class. 
Systems that belong to the same universality class share 
the values of critical exponents, amplitude ratios, scaling 
functions. Our goal in this paper is to show how these uni-
versal features are changed if instead of a regular lattice 
structure, it is cosidered the disordered one. Disorder in 
the lattice structure may be imposed, e.g., by dilution, when 
a part of the lattice sites in (1) are not occupied by spins. 
Such situation mimics randomness and nonregularities that 
are so often met in nature and attract much interest in modern 
theory of critical phenomena (see, e.g., [8] and references 
therein). To quantify our analysis, we will calculate the mar-
ginal dimension ( )cn σ : for given space dimension d it dis-
criminates between different universality classes. The rest 
of the paper is organized as follows. In the next section, we 
give a short review of the results present so far, in Sec. 3 
we describe the field-theoretical renormalization group 
picture of the critical behavior for the long-range interact-
ing n-vector model with disorder. The results for cn  are 
given in Sec. 4, and we summarize our study in Sec. 5. 
Some lengthy expressions are given in the Appendix. 

2. Review 

In this section, we briefly review some results relevant 
for our analysis. To proceed further, we explain terminology 
used throughout the paper. The n-vector model (1) with 
short-range interactions — since the corresponding free 
energy is invariant with respect to rotations in the n-dimen-
sional magnetization space it is also called the ( )O n -sym-
metric model — manifests the second-order phase transi-
tion for the lattice space dimension > lcd d . The lower 

critical dimension = 1lcd  for the discrete (Ising) case n = 1, 
whereas = 2lcd  for > 1n . Critical exponents and other 
universal properties of the short-range n-vector model de-
pend on n and d  in a nontrivial way in the region 

<lc ucd d d≤ . They are said to belong to the short-range 
universality class. For d  larger than the upper critical di-
mension = 4ucd , the model is governed by the mean-field 
exponents, see [9] for more details. Introducing the long-
range interaction (2) drastically changes the picture of the 
critical behavior of the n-vector model (1). Calculations 
performed for the three-dimensional spherical model [10] 
(it corresponds to the n-vector model at = 3d , =n ∞) 
show that for > 2σ  the critical properties are governed by 
the short-range critical exponents, while for < 2σ  one has 
two regimes depending on the value of σ: with mean-field 
critical exponents and with the σ-dependent ones. One-
dimensional Ising model ( = 1,d  = 1n ) with interaction (2) 
was proven to have phase transition to the long-range-
ordered phase at nonzero temperature [11]. Field-theore-
tical renormalization group (RG) analysis of the long-range 
interacting n-vector model gives three universality classes 
in dependence on σ  [12]: (i) the mean-field critical behavior 
for / 2dσ ≤ , (ii) the short-range universality class for 

2σ ≥  with critical exponents coinciding with those of the 
model with short-range interactions, (iii) the long-range uni-
versality class for / 2 < < 2d σ , where critical exponents de-
pend on σ. Later it was established that the actual boundary 
between the short-range and the long-range universality 
classes lies at = 2 SRσ −η  [13, 14] rather than at = 2σ , 
ηSR is the pair correlation function critical exponent of 
the short-range model. Such picture was corroborated by 
other approaches including nonperturbative variant of RG 
(NPRG) [15], Monte Carlo simulations [16] and conformal 
bootstrap [17] (for other references and discussion see the 
review [18]). 

Another factor discussed in this paper is the structural 
disorder and its impact on the critical behavior. The influ-
ence of structural inhomogeneity on the universal properties 
of physical systems continues to be a hot research topic 
both for academic and practical reasons, since almost all 
materials are characterized by a certain degree of disorder 
in their structure. Structural inhomogeneities in magnetic 
systems are of different nature, which in turn may lead to 
different changes in critical behavior. In the case of strong 
structural disorder, randomness is accompanied by frustra-
tion and percolation effects and often leads to absence of 
the long-range magnetic order. The case of weak structural 
disorder is not that obvious. Here we focus specifically on 
presence of the weak quenched disorder in lattice structure, 
which may be implemented into model (1) via dilution by 
point-like uncorrelated (or short-range correlated) quenched 
nonmagnetic inhmogeneities. Its relevance for the critical 
behavior is given by the Harris criterion [19]. The criterion 
states that the structural disorder (quenched dilution) leads 
to a new universality class of the magnetic phase transition 
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only if the heat capacity critical exponent of the undiluted 
(pure) system is positive, > 0pα , i.e., if the heat capacity 
of the pure system diverges at the critical point. Corre-
spondingly, the disorder is irrelevant if < 0pα . For the 
short-range n-vector model at = 3d , > 0pα  for = 1n  
(Ising model), whereas < 0pα  for 2n ≥ , therefore, due to 
the Harris criterion the diluted n-vector model at 2n ≥  shares 
the universal properties of its undiluted counterpart [20, 21]. 
Unlike the short-range n-vector model, the long-range one 
manifests the new universality class induced by dilution 
also in the region 2n ≥ , as was shown in the RG study of 
Ref. 22 within two-loop approximation. This result was 
also corroborated by the low-temperature RG [23]. How-
ever, the estimates of the regions of values ( , , )d n σ , where 
the new disordered long-range universality class governs 
the critical behavior were not satisfactory [22]. The pertur-
bative RG expansions having zero radius of convergence, 
additional resummation procedures have to be applied 
in order to get reliable numerical data on their basis [7]. 
Especially it concerns the Ising model ( = 1n ), where the 
degeneracy of the RG equations (similarly as in the short-
range case [20, 21]) makes the expansion parameter to be 
ε  [24]. Reliable results for the last case were obtained 

within a massive renormalization scheme with resumma-
tion of the RG functions [25]. 

A remarkable feature of the Harris criterion is that it al-
lows to forecast structural-disorder-induced changes in 
the universality class of a pure system without explicit cal-
culation of the RG functions for the diluted one. Indeed, 
if the structural disorder changes the universality class only 
when the heat capacity of the pure system diverges (i.e., 
when > 0)pα , one can use the condition = 0pα , as an equa-
tion to define parameters ( , , )d n σ  that discriminate be-
tween different universality classes. For given space dimen-
sion d , such equation defines the so-called marginal order-
parameter dimension ( )cn σ . Similar to critical exponents 
and critical amplitude ratios, the marginal dimensions are 
universal quantities, reachable in experiments and numerical 
simulations and are the subject of intensive studies [26–31]. 
In the next sections, we will calculate the marginal dimen-
sion ( )cn σ  for the diluted long-range n-vector model at 
space dimensions = 2d  and 3. This marginal dimension 
line in the ( , )n σ  parametric plane defines a boundary of 
stability between the pure long-range and the disordered 
long-range universality classes. To this end, we use the re-
cent three-loop RG results for the critical exponents of 
the pure n-vector model with long-range power-law decaying 
interactions [32]. 

3. Field-theoretical renormalization group description 

The progress achieved in qualitative understanding and 
quantitative description of critical phenomena to a large 
extend is due to application of RG methods [7]. In the 
field-theoretical RG approach, the critical properties of the
n-vector model (1) with the power-law decaying long-

range interactions (2) are described by analyzing the effec-
tive Hamiltonian [33]: 

 ( ) 0/2 2 2 2 2
0

1= ( ) ( )
2 4!

d u
d x rσ ∇ + + 

 ∫= ϕ ϕ ϕ , (3) 

where 1= ( ) = { ( ), , ( )}nϕ ϕx x xϕ ϕ  is an n-component vec-
tor field, 0u  is the unrenormalized coupling, 0r  defines 
the temperature distance to the critical point, and /2σ∇  is 
a symbolic notation for the fractional derivative. The last is 
defined via its action in the momentum space and leads to 
the propagator term qσ  rather than 2q , as in the case of 
short-range interactions. Power counting gives the upper 
critical dimension = 2ucd σ, which at = 2σ  coincides with 
the traditional = 4ucd . The effective Hamiltonian (3) is re-
levant for the case 0 < < 2 SRσ −η . To study crossover to 
the short-range case 2σ→ , one should include the tradi-
tional term 2( )∇ϕ  into (3). 

In the field-theoretical RG approach, a critical point 
corresponds to a reachable and stable fixed point (FP) of 
the RG transformation. It has been found [12] that the non-
trivial FP determining new long-range universality class is 
stable for / 2 <d σ. Critical exponents within this univer-
sality class were calculated in = 2 dε σ − -expansion up to 
order 2ε  [12, 33, 34] and up to order 1/ n  [35] in 1/ n-ex-
pansion. Estimates for the critical exponents of three-dimen-
sional systems were obtained within the massive renormal-
ization approach completed by resummation in two-loop ap-
proximation [36]. The RG results in three-loop approximation 
were obtained only recently [32]. Monte Carlo estimates 
for the critical exponents in this universality class have 
been obtained only for the = 1n  Ising case, mainly in one 
and two space dimensions (for collection of references, 
see [32]). Only a few Monte Carlo results are available for 
the three-dimensional case [37]. 

The presence of uncorrelated nonmagnetic impurities 
(weak quenched structural disorder) is usually modeled by 
fluctuations of the local phase transition temperature [38]. 
Introducing = ( )φ φ x  as the field of local critical tempera-
ture fluctuations, one obtains the following effective Ha-
miltonian for the structurally disordered system: 

 ( )( ) 0/2 2 2 2 2
0

1= ( ) ( ) ,
2 4!

d u
d x rσ ∇ + + φ + 

 ∫= ϕ ϕ ϕ  (4) 

where the random variable φ has a Gaussian distribution 
with zero mean and a correlator containing the second 
coupling 0v : 

 ( ) = 0〈φ 〉x , 0( ) ( ) = ( )′ ′〈φ φ 〉 δ −x x x xv . (5) 

The angular brackets 〈 〉  indicate an average over the ran-
dom variable φ distribution. 

The RG picture for the disordered long-range model (4) 
is similar to that for its short-range analog [20, 21]. In the pa-
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rametric space of couplings ( , )u v , the critical properties 
of  the model (4) are governed by four FPs * *( , )u v  in de-
pendence on values = 2 dε σ −  and n [22, 24]: Gaussian FP 

*( = 0,u  * = 0)v , nonphysical FP *( = 0,u  * = 0)v , Heisen-
berg long-range or pure long-range FP *( = 0,u  * = 0)v , 
and disordered long-range FP *( = 0,u  * = 0)v . The Gaus-
sian FP is always unstable below critical dimension 

= 2ud σ ( > 0ε ), while the nonphysical FP is always stable 
in this case, however, it is not accessible from initial condi-
tions appropriate for the model described by (4) and (5). 
For > 0ε  and > cn n , the long-range Heisenberg FP is stable 
and the disordered one is unstable, while for < cn n  the FPs 
swap their stability. Therefore, for > cn n  the universal cri-
tical exponents of the diluted model (4) coincide with those 
of the model (3). For < cn n , model (4) belongs to the new 
disorder-induced long-range universality class. The boundary 
between these two regimes is determined by the marginal 
dimension ( , )cn d σ . 

So far, the value of cn  for the long-range n-vector model 
was known in the framework of the two-loop approxima-
tion [39], which gave the result 

 2= 4 4[ (1) 2 ( / 2) ( )] ( ),cn O− ψ − ψ σ +ψ σ ε + ε  (6) 

where ( )xψ  is the digamma function. The asymptotic na-
ture of this series together with its shortness made it diffi-
cult to get reliable numerical estimates on its basis. In the 
next section, we will proceed getting the next order of the 
ε-expansion and delivering numerical estimates for ( )cn σ  
at certain space dimensions with the help of resummation 
procedures. 

4. Calculation of the marginal dimension 

As mentioned above, the marginal dimension cn  of 
a weakly diluted n-vector model with power-law decaying 
interactions can be obtained on the base of the critical ex-
ponents for the undiluted model. As a consequence of 
the Harris criterion, the master equation for determining cn  is 

 ( , , ) = 0.p cn dα σ  (7) 

The treatment of Eq. (7) by means of the field-theoretical 
RG approach can be performed in various schemes. Here 
we exploit the results of dimensional regularization with 
the minimal subtraction [40], allowing to obtain quantities 
of interest by familiar ε-expansion with = 2 dε σ −  in our 
case. To get ( , )cn d σ , we use the hyperscaling relation

= 2p pdα − ν  and ε-expansion for the critical exponent pν  
of the n-vector model with long-range interactions, which 
is known in the three-loop approximation [32] in the fol-
lowing form: 

 ,01 2
3

( 2)(7 20)( 2)
8 ( 8)

S
p

n nn
n n

− + + α+
n = σ − ε + ε

+ +
  

 
3

2
,05

( 2) 4(5 22)(7 20)
( 8) S
n n n
n
+ ε + − + + α+

  

 2
,1 ,1 ,0( 8) (7 20)( 2 )S D Sn n+ + + α − α α   

 2( 8)( 8( 1) 2( 20 60)T Un n n n+ + − − α + + + α   

 2 2
1 2

2( 24 56) (5 28 48)I In n n n+ + + α + + + α   

 4
4

(5 22) ) ( ),In O+ + α + ε  (8) 

where Kα  with 1 2 4= { , , , , , , }K S D I I I T U  are expressed 
in terms of the loop integrals (for details see [32]). ,S iα  and 

,D iα  are the coefficients at iε  in the ε-expansion series of 
Sα  and Dα . Explicit expressions for Kα  are given in the 

Appendix. We get the following expression for cn : 

(,0 1 2 4
( , ) = 4 4 56 40 7c S I I In d σ + α ε + α + α + α  

)
2

2 3
,1 ,0 ,0 ,1192 56 96 4 52 ( ).

24D S S S T U Oε
− α α − α + α − α + α + ε

  (9) 

Taking into account the explicit expression for ,0Sα , one 
can check that up to the first order of ε in Eq. (9) coincides 
with the two-loop result (6). 

Formally, the numerical value of cn  at fixed d  and σ  
can be calculated from the expansion (9) by using expres-
sions for Kα  from the Appendix, recalling that = 2 dε σ −  
and substituting the values of d  and σ . However, the ε-
expansions are known to be asymptotic at best [7]. There-
fore, one has to apply special resummation procedures to 
restore their convergence in order to get reliable numerical 
estimates on their basis. Doing so, we start our analysis by 
representing series (9) by means of the diagonal Padé ap-
proximant [1/1]( )ε  [41]. The result for cn  as a function of σ  
is shown by dashed lines in Figs. 1(a) and 1(b) for fixed 

= 2d  and = 3d , correspondingly. As noted in the previous 
section, in the region of n and σ  above the lines, the criti-
cal behavior of the diluted model is the same as for an un-
diluted model with long-range interactions. For the values 
of n and σ  below the lines, the new disorder long-range 
universality class is induced. It is known that in the short-
range case, the Padé approximants of the three-loop expan-
sion give values of cn  that exceed the most accurate esti-
mates [27]. It seems to be also in the long-range case, since 
the data of the NPRG approach (shown by black dots in 
Fig. 1) are located below the lines calculated via Padé ap-
proximant*. To enhance our estimates, we use also a more 
elaborated Padé–Borel resummation technique [42]. First, 
to weaken the factorial growth of the expansion coeffi-
cients, we write the Borel transform for (9) as 

* These data were obtained from interpolation of the NPRG results for critical exponents of the long-range n-vector model [15]. 
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2 2

=0 =0 !

k
kk

k
k k

n
n

k
ε

ε →∑ ∑ . (10) 

An analytical continuation of the Borel transform is achi-
eved by representing it in the form of the diagonal Padé 
approximant [1/1] ( )B ε , where subscript B  is used to distin-
guish from the Padé approximant of the original series (9). 
Finally, the resummed function is obtained via an inverse 
Borel transform: 

 res

0

( ) = e [1/1] ( ).t
c Bn dt t

∞
−ee ∫  (11) 

Results following from the Padé–Borel resummation are 
presented in Fig. 1 by solid lines for = 2d  and 3. For = 3d
, the Padé–Borel resummation leads to lower values of 

( )cn σ , as compared to those obtained form the [1/1] Padé 
approximant. This is a right tendency, as is seen also from 
comparing our results to the NPRG data shown by dots in 
Fig. 1. As usual with the perturbative expansions, the accu-
racy of the results decreases with an increase in the expan-
sion parameter, in our case it is = 2 dε σ − . Therefore, our 
results are less accurate for = 2d , where the expansion 
parameter changes within 0 2≤ ε ≤  for 1 2≤ σ ≤ . But even 
then the results of Padé–Borel resummation may serve as 
reliable estimates up to the moderate values of 1.5σ. . A 
remarkable feature of the plots presented in Figs. 1(a) and 
1(b) is that for a certain range of parameters σ  there are 
regions in the ( ,n σ) plane that correspond to integer val-
ues of = 1, 2, 3n  and lie below the ( )cn σ  curve. This 
means that the new disorder long-range universality class 
is induced in the n-vector model not only for the Ising (

= 1n ), but also for the XY ( = 2n ) and classical Heisen-
berg ( = 3n ) cases. 

5. Conclusions 

In this study, we were interested in the question how 
the critical behavior of a many-particle system is changed 
under the competing influence of two factors: type of inter-
action and structural disorder? To this end, we have con-
sidered the original model to describe criticality, an n-vector 
spin model (1), and analyzed changes in its critical beha-
vior provided the interaction between spins is of a long-
range nature (2) and an underlying lattice structure is dis-
ordered. To be more specific, we considered the case when 
the weak quenched structural disorder leads to fluctuations 
in the local transition temperature (5). The literature available 
so far [22, 23] reported that second-order phase transition 
in such a model can belong to the new, disorder induced 
long-range universality class. However, such a qualitative 
conclusion has to be supported by quantitative estimates of 
the region of model parameters where the new universality 
class can manifest. 

To do so, we have calculated the marginal dimension 
( )cn σ  of the structurally-disordered long-range interacting 

n-vector model. For given space dimension d  and interac-
tion decay σ , the model with the order parameter component 
number < cn n  belongs to the new disorder-induced long-
range universality class. Based on the recent results for the 
critical exponents of the pure long-range n-vector model 
[32], we used the Harris criterion to calculate ( )cn σ  with 
the record three-loop accuracy, Eq. (9). This enabled us to 
apply familiar resummation techniques to evaluate numeri-
cal values of the marginal dimension, as shown in Figs. 
1(a) and 1(b) for space dimensions = 2d  and = 3d . Ob-
tained results serve as a solid argument that not only the 
Ising-like ( = 1n ) systems, but also systems that are described 
by the XY ( = 2n ) and Heisenberg ( = 3n ) models belong 
to the new universality class for the moderate values of σ  
at space dimensions = 2d  and 3. 

Fig. 1. (Color online) Resummed values of ( )cn σ  obtained by the Padé approximant [1/1] (dashed lines) and Padé–Borel resummation 
(solid lines) for = 2d  (a) and 3 (b). For the region of values n  and σ above the lines, the pure long-range universality class holds, while 
the new disorder long-range universality class is induced for the values below the lines. Dots show results that follow from the interpola-
tion of the NPRG data of Ref. 15. The mean-field behavior holds for < / 2dσ  (regions separated by vertical dashed lines). 
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Appendix 

In this Appendix, we list expressions for Kα , as they 
were given in Ref. 32: 

22

1 1

1 1 1

1 (1)
2 2

(1) (1) ,
8 2 2

2 (1) 2 (1)
4 2 4 4 2

3 (1) 5 2
2 4

3 (1) 4 7
4

D
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d

d d

d d d d
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d
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In the above expressions, iψ  are the polygamma func-
tions of order i , while 0J  is the following sum: 
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 ___________________________ 

Про новий клас універсальності 
у структурно-невпорядкованій n-векторній  

моделі з далекосяжними взаємодіями 

Dmytro Shapoval, Maxym Dudka, Yurij Holovatch 

Досліджено межу стійкості області, де нетривіальна кри-
тична поведінка n-векторної моделі з далекосяжними сте-
пенево загасаючими взаємодіями зумовлюється наявністю 
структурного безладу (наприклад, слабке заморожене розве-
дення). Ця межа задається марґінальною вимірністю параме-
тра порядку nc, що залежить від вимірності простору d та 
контролюючого параметру загасання взаємодії σ, нижче якої 
модель належить до нового класу універсальності, зумов-
леного розведенням. Використовуючи критерій Гарріса та 
нещодавні результати теоретико-польової ренормгрупи для 
чистої моделі з далекосяжними взаємодіями, ми отримали nc 
у вигляді розкладу за ε = 2σ – d у трипетлевому наближенні. 
Розраховано числові значення для nc із застосуванням мето-
дів пересумовування. Отримані результати показують, що до 
нового класу універсальності, зумовленого безладом, при d = 2 
та 3 належать не тільки ізінґівські системи (n = 1). 

Ключові слова: далекосяжні взаємодії, заморожений безлад, 
ренормгрупа, марґінальна вимірність.
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