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Biconical critical dynamics
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Abstract – A complete two-loop renormalization group calculation of the multicritical dynamics
at a tetracritical or bicritical point in three-dimensional anisotropic antiferromagnets in an
external magnetic field is performed. Although strong scaling for the two order parameters (OPs)
perpendicular and parallel to the field is restored as found earlier, in the experimentally accessible
region the effective dynamical exponents for the relaxation of the OPs remain different since their
equal asymptotic values are not reached.
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Systems with more than one order parameter (OP)
exhibit a rich variety of phases separated by transition
lines which might meet in multicritical points. The interac-
tion might favor simultaneously ordering of two OPs. Such
a doubled-ordered phase is known as supersolid phase [1]
and is under investigation since its possible observance in
4He [2]. The two OPs might describe the order in phys-
ically different phases: e.g. from the normal fluid to the
superfluid or to the normal solid phase. If both orders
appear one might have transitions from the superfluid to
the supersolid phase and from the normal solid phase to
the supersolid phase. Another example would be a system
with transitions to a superconducting and a magnetically
ordered phase and a phase where both orderings appear. In
purely magnetic systems the phases are characterized by
different orderings in spin space. There is a correspondence
between the quantum liquid system and magnetic systems
where the supersolid phase corresponds to the biconical
phase [3]. The existence of a biconical phase leads to the
occurrence of a tetracritical point where four second order
phase transition lines meet and which belongs to a new
universality class [4].
In the case of the three-component (n= 3) three-

dimensional (d= 3) anisotropic antiferromagnets in an
external magnetic field in z-direction the disordered

(a)E-mail: reinhard.folk@jku.at

(paramagnetic) phase is separated from the ordered
phases by two second-order phase transition lines: i) one
to the spin flop phase (ordering in the spin space per-
pendicular to the external magnetic field) and ii) one
to the antiferromagnetic phase (ordering parallel to the
external field). The point where these two lines meet is
a multicritical point which turned out to be either tetra-
critical or bicritical depending on whether the ordered
phases are separated by an intermediate biconical phase
or not. The static phase transitions on each of the phase
transition lines belong for i) to an XY-model with n= 2
and for ii) to an Ising model with n= 1 [4]. Whether a
bicritical or tetracritical point is realized depends on the
specific fourth-order couplings [4,5]. Several antiferromag-
nets have been suggested for observing the theoretically
proposed phase diagrams, a review on the experimental
situation can be found in [6–8].
Concerning the dynamical universality classes they

might be different for the systems mentioned above
depending on the possible reversible and non-reversible
terms in the equations of motion and the conservation
properties. In the magnetic system considered here the
transition i) belongs to the class described by model-F
and ii) belongs to the model-C class (for the definitions of
the models see [9]). At the multicritical point the critical
behavior is described by a new universality class both in
statics and dynamics characterized by the biconical fixed
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point [5]. The advantageous feature of these systems is
that all the different OPs characterizing the ordered phase
are experimentally accessible. This is most important
for the dynamical behavior since the only other example
belonging to model F is the superfluid transition in 4He
where the OP is not directly measurable. Here the OPs
are the components of the staggered magnetization. Their
correlations (static and dynamical) are experimentally
accessible by neutron scattering. Realistic models might
be more complicated (see, e.g., [10]) but the behavior
near the multicritical point is well described by the
renormalization group (RG) theory.
The dynamical model we analyze goes beyond the pure
relaxational dynamics [11] and has been considered by
means of the field-theoretical RG approach in [12–14]
replacing earlier mode coupling theories [15]. It was argued
that due to non-analytic terms in ǫ= 4− d a dynamical
fixed point (FP) in two-loop order (which was calculated
only partly) qualitatively different from the one-loop
FP is found. In one-loop order the relaxation times of
the components of the staggered magnetization parallel
and perpendicular to the external magnetic field scale
differently whereas in two-loop order they would scale
similarly if the new FP would be stable. In addition it
turned out that the FP value of the time scale ratio of
the two OPs cannot be found by ǫ expansion and might
be very small at d= 3, namely of O(10−86). A basic
assumption of the above analysis was that within statics
the Heisenberg FP is stable. However, it turned out in
two-loop statics using resummation techniques that in
d= 3 the Heisenberg FP interchanges its stability with the
biconical FP [5]. Here we calculate the complete functions
in two-loop order which allows us to consider the non-
asymptotic behavior near the multicritical point.
The non-conserved OP in an isotropic antiferromagnet

is given by the three-component vector �φ0 of the staggered
magnetization, which is the difference of two sublattice
magnetizations. In an external magnetic field applied to
the anisotropic antiferromagnet the OP splits into two
OPs, �φ⊥0 =

(

φx0 , φ
y
0

)

perpendicular to the field, and φ‖0 =
φz0 parallel to the external field. In addition to the two OPs
the z-component of the magnetization, which is the sum
of the two sublattice magnetizations, has to be considered
as conserved secondary density m0. The static critical
behavior of the system is described by the functional

H =

∫

ddx

{

1

2
r̊⊥�φ⊥0 · �φ⊥0+

1

2

d
∑
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+
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γ̊⊥m0�φ⊥0 · �φ⊥0+

1

2
γ̊‖m0φ‖0φ‖0− h̊m0

}

,

(1)

with familiar notations for bare couplings {ů, γ̊}, masses

{̊r} and field h̊ [5,11]. One may switch from the descrip-

tion of real OP components �φ⊥0 to a complex OP, a
macroscopic wave function, as it appears in a superfluid
or superconductor by defining ψ0 = φ

x
0 − iφ

y
0. Apart from

demonstrating that all these systems belong to the
same the static universality class it also is of practical
advantage in the dynamic calculation.
The critical dynamics of relaxing OPs coupled to a

diffusing secondary density is governed by the following
equations of motion [12] (there the complex OP ψ0 was
used):

∂φα⊥0
∂t

= −Γ̊′⊥
δH

δφα⊥0
+ Γ̊′′⊥ǫ

αβz δH

δφβ⊥0

+g̊ ǫαβzφβ⊥0
δH

δm0
+ θαφ⊥ , (2)

∂φ‖0

∂t
=−Γ̊‖

δH

δφ‖0
+ θφ‖ , (3)

∂m0
∂t
= λ̊∇2

δH

δm0
+ g̊ ǫzαβφα⊥0

δH

δφβ⊥0
+ θm, (4)

with the Levi-Civita symbol ǫijk. Here α, β = x, y and
the sum over repeated indices is implied. Combining
the kinetic coefficients of the OP to a complex quantity,
Γ̊⊥ = Γ̊

′
⊥+ i̊Γ

′′
⊥, the imaginary part constitutes a preces-

sion term created by the renormalization procedure even
if it is absent in the background. The kinetic coefficient
λ̊ and the mode coupling g̊ are real. The stochastic forces
�θφ⊥ ,

�θφ‖ and θm fulfill Einstein relations

〈θαφ⊥(x, t) θ
β
φ⊥
(x′, t′)〉= 2Γ̊′⊥δ(x−x

′)δ(t− t′)δαβ , (5)

〈θφ‖(x, t)θφ‖(x
′, t′)〉= 2Γ̊‖δ(x−x

′)δ(t− t′), (6)

〈θm(x, t) θm(x
′, t′)〉=−2̊λ∇2δ(x−x′)δ(t− t′). (7)

The reversible terms in these dynamic equations for
the OP components and the conserved density have been
derived by using generalized Poisson brackets for the
spin components defining the staggered magnetization
and the z-component of the magnetization (for more
details see [9] and the literature cited there). An exception
constitutes the term with Γ̊′′⊥ which appears due to the
renormalization procedure and the non-zero asymmetric
coupling γ̊⊥. Similar dynamic equations may also appear
in the other systems where biconical phases are observed.
The superfluid transition is described by model F and also
for the superconducting transition this universality class
has been suggested [16,17] although no explicit derivation
based on the methods used here has been performed.
Applying the renormalization procedure using minimal

subtraction scheme [18] we find the flow equations for the
time scale ratios of the renormalized kinetic coefficients
and the mode coupling between the perpendicular OP
components and the magnetization. We define time scale
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ratios by the ratios of the kinetic coefficients of the OPs

and the secondary density w⊥ ≡
Γ⊥
λ
, w‖ ≡

Γ‖
λ
, as well

as the ratios between the relaxation rates of the two
OPs v≡

Γ‖
Γ⊥
=
w‖
w⊥
, v⊥ ≡

Γ⊥
Γ+⊥
= w⊥
w
+

⊥

, and the mode coupling

parameters f⊥ ≡ g/
√

Γ′⊥λ or F = g/λ. For these dynamic
parameters we obtain the flow equations

l
dw⊥
dl
=w⊥ (ζΓ⊥ − ζλ) , l

dw‖

dl
=w‖

(

ζΓ‖ − ζλ
)

, (8)

l
df⊥
dl
=−
f⊥
2

(

ǫ+ ζλ− 2ζm+ℜ

[

w⊥
w′⊥
ζΓ⊥

])

, (9)

where l is the RG flow parameter and the ζλ-function is
obtained by the renormalization procedure as

ζλ =
1

2
γ2⊥+

1

4
γ2‖ −

f2⊥
2
(1+Q). (10)

The function Q≡Q(γ⊥, w⊥, F ) contains all higher-order
contributions beginning with two-loop order and is iden-
tical to the corresponding function in model F (see (A.28)
and (A.29) in [9]). We obtain the ζ-function for the
perpendicular kinetic coefficient Γ⊥ as

ζΓ⊥ = ζ
(A)
Γ⊥

(

{u}, v⊥, v
)

+
D2⊥

w⊥(1+w⊥)

−
2

3

u⊥D⊥
w⊥(1+w⊥)

A⊥−
1

2

D2⊥
w2⊥(1+w⊥)

2
B⊥

−
1

2

γ‖D⊥

1+w⊥

(

u×
3
+
1

2

γ‖D⊥

1+w⊥

)

X⊥ , (11)

where we have introduced the coupling D⊥ ≡
w⊥γ⊥− iF . The functions A⊥ ≡A⊥(γ⊥,Γ⊥, w⊥, F ),
B⊥ ≡B⊥(γ⊥,Γ⊥, w⊥, F ) are identical to eqs. (A.25),
(A.26) in [9]. X⊥ is defined as

X⊥ ≡ 1+ ln
2v

1+ v
−

(

1+
2

v

)

ln
2(1+ v)

2+ v
, (12)

ζ
(A)
Γ⊥
({u}, v⊥, v) is the ζ-function of the perpendicular

relaxation Γ⊥ in the biconical model A, but now with a
complex kinetic coefficient Γ⊥

ζ
(A)
Γ⊥

(

{u}, v⊥, v
)

=
u2⊥
9






2 ln
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(

ln
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2

v
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−
1

2

)

.

(13)

The dynamic ζ-function of the parallel relaxation kinetic
coefficient Γ‖ is obtained as

ζΓ‖ = ζ̄
(C)
Γ‖
(u‖, γ‖, w‖)−

1

2

w‖γ‖

1+w‖

[

(

2

3
u×+

w‖γ‖

1+w‖
γ⊥

)

×ℜ
[ T1
w′⊥

]

−
γ‖F

2(1+w‖)
ℑ
[ T2
w
′2
⊥

]

]

+ ζ
(A)
Γ‖

(

{u}, v⊥, v
)

.

(14)

ζ̄
(C)
Γ‖
(u‖, γ‖, w‖) = ζΓ(u‖, γ‖,Γ‖, w‖)− ζ

(A⋆)
Γ (u‖,Γ‖), where

the functions on the right-hand side are defined by (A.8)
and (A.9) for n= 1 in [9]. The functions T1 and T2 are
defined as

T1 ≡ D⊥

[

1+ ln
1+ 1
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−

(
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1
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)
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(
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]
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+
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[
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,

(16)

and ζ
(A)
Γ‖
({u}, v⊥, v) is the ζ-function of the kinetic coeffi-

cient of the parallel relaxation in the biconical model A.
With a complex Γ⊥ it reads

ζ
(A)
Γ‖

(

{u}, v⊥, v
)
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4

(

ln
4

3
−
1

6

)

+
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(

1
v⊥
+v
)
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(
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)(

1
v⊥
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)
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+v ln

(

1+ 1
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)
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2



 . (17)

In order to find the FP values of the time scale ratios
and the mode coupling the right-hand sides of eqs. (8),
(9) have to be zero. If the FP value of the mode coupling
f⊥ were zero, one would obtain the FP values of the time
ratios of model C discussed in [19]. However this FP is
unstable. If the FP value of f⊥ is non-zero then due to
the logarithmic terms in v in the ζ-functions both OPs
have to have the same time scales i.e. a finite non-zero FP
value v⋆. This is only possible either for non-zero finite
FP values of w⊥ and w‖ or when both of these FP values
are zero. No finite FP values for w⊥ and w‖ have been
found. In the other case the approach to zero of both time
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Table 1: Two-loop FP values of the mode coupling f⊥, the
ratios q=w‖/w

′
⊥, s=w

′′
⊥/w

′
⊥ and the dynamic exponents in

the subspace w‖ = 0, w⊥ = 0 with finite value of v= q/(1+
is) for the static biconical B and Heisenberg H FPs. For
comparison we add the FP values for the exponents that
govern critical dynamics at magnetic fields below and above the
multicritical point. These are described by model C at n= 1
and model F at n= 2.

f⋆⊥ q⋆ s⋆ zOP zm

B 1.232 1.167 · 10−86 0 2.048 1.131
H 1.211 3.324 · 10−8 0 2.003 1.542
B 1.232 2.51 · 10−782 0.705 2.048 1.131
H 1.211 3.16 · 10−66 0.698 2.003 1.542
C [20] – – – 2.18 2.18
F [21] 0.83 – – ∼ 1.5 ∼ 1.5

scales has to be the same. Therefore the approach to the
multicritical dynamic FP is described by the flow in the
limit w⊥→ 0, w‖→ 0 and v finite (asymptotic subspace).
The flow in the complete dynamic parameter space and
in this asymptotic subspace will be discussed afterwards.
The ζ-function for the perpendicular OP relaxation

might be complex, ζΓ⊥ = ζ
′
Γ⊥
+ iζ ′′Γ⊥ . In order to obtain

the usual asymptotic power laws for the relaxation coef-
ficients Γ‖ and Γ⊥ the FP value of the imaginary part
ζ ′′
⋆
has to be zero. In consequence the asymptotic flow of

the real and imaginary part of v is governed by the same
exponent ζ ′⋆Γ⊥ − ζ

⋆
Γ‖
.

If the FP value of the mode coupling f is different from

zero and finite one has from eq. (9) ε+ ζ ′⋆Γ⊥ + ζ
(d)⋆
λ = 0 and

the relation [14] between dynamical and static critical
exponents z⊥+ zm = 2

φ
ν
(here the z exponents govern the

corresponding scaling times and φ and ν are the crossover
and correlation length exponents). The dynamical expo-
nents are defined as zo = 2+ ζ

⋆
o with o=⊥, ‖, m. Because

v⋆ is finite and non-zero z⊥ = z‖ ≡ zOP. This means that
strong scaling with respect to the OPs, the components
of the staggered magnetizations, but weak scaling with
respect to the conserved density, the magnetization m,
holds since zm �= zOP.
The two-loop order values of the dynamic exponents
together with the FP values of the time scales and the
mode coupling are presented in table 1. For the model of
the three-dimensional anisotropic antiferromagnet under
consideration, the biconical FP B (u⋆⊥ �= u

⋆
‖ �= u

⋆
×) has

been shown to be stable. It governs the static critical
behavior in the complete space of couplings (see, e.g., [5]).
Substituting their two-loop values obtained in [5] within
generalized Padé-Borel resummation technique [22] into
the flow equations (8), (9), we get two dynamical FPs,
their coordinates are given in the first and third row of
table 1. Although two different dynamical FPs are found
(with zero and non-zero s⋆) this difference does not lead to
a change in the corresponding FP values of the dynamical

Fig. 1: (Colour on-line) Effective dynamic exponents in the
background using the flow equations (8), (9) in the complete
dynamical parameter space. The static FP values are taken for
the Heisenberg FP (dashed curves) and for the biconical FP
(solid curves).

exponents. This is because both FPs have extremely small
but different q⋆.
For comparison we have included, besides the biconi-

cal FP B describing tetracritical behavior, the isotropic
Heisenberg FP H (u⋆⊥ = u

⋆
‖ = u

⋆
×) describing bicritical

behavior. This FP is only reached in the subspace of the
static couplings that lie in its attraction region (see fig. 3
in [5]). Again, as in the case of the biconical FP B, we
obtain two dynamical FPs with coordinates given in the
second and fourth line of table 1. The numerical values
of the dynamical exponents are practically equal in the
different dynamical FPs H. We further quote in table 1
the dynamical critical exponents on the two phase transi-
tion lines below and above the multicritical point, which
are given by model C and model F, respectively.
The FP value of v is extremely small and therefore

in the experimental accessible region one cannot prove
strong scaling for the OP components. Indeed in the non-
asymptotic region the dynamic parameters are described
by the flow equations (8), (9) and from these dependencies
the effective dynamic exponents can be calculated. The
result is shown in fig. 1. The static parameters have been
set already to their FP values and therefore the starting
values of the effective exponents are different from z = 2.
It turns out that the prefactor of the ln v-terms in eqs. (11)
and (12), which drive the flow of the dynamic parameters
into the asymptotic subspace is reduced and the flow is
almost like in one-loop order. Therefore weak scaling with
zeff‖ ∼ 2.04 and zeff⊥ ∼ zeffm ∼ 1.6 is observed1.

1Even for flow parameters ln l∼−106 no visible changes in the

values of the different zeff occur although the dynamic parameters

change. Thus, the asymptotic subspace is not reached for these

extremely small values of l.
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Fig. 2: (Colour on-line) Effective dynamic exponents in the
asymptotic subspace w‖ =w⊥ = 0 and v≡w‖/w⊥ �= 0 and
finite. Dashed and solid curves as in fig. 1.

The approach of the effective dynamical exponents in
the asymptotic subspace w⊥ =w‖ = 0 and v finite to their
biconical FP values is shown in fig. 2. The background
behavior is dominated by a behavior corresponding for the
perpendicular components by model F and for the parallel
components by model A with a finite value Re(v) whereas
Im(v) is almost zero. Therefore for the biconical case even
for flow parameter values ln l∼−104 the two effective
exponents do not reach their asymptotics: zeff⊥ < zOP and
zeffm > zm. This is different for the Heisenberg case where
the FP values of the dynamical exponents are reached (see
dashed curves in fig. 2).
Although from our calculation we conclude that the
asymptotics (strong scaling) would be unobservable effec-
tive exponents as described in fig. 1 are observable. The
complete two-loop calculation allowed us to calculate not
only the values of the dynamic FP but also the effective
exponents which are the quantities governing the behav-
ior of the transport coefficients, i.e. the relaxation and
diffusion coefficient of the staggered magnetization and
magnetization, respectively. It is well known that near a
dynamical stability boundary separating a strong scaling
FP with a finite time scale ratio from a weak scaling
FP with a vanishing time scale ratio also small dynamic
transient exponents appear and effective critical behavior
is observed. The case where the OPs have the component
values n= 2 and n= 1 is located near the stability
boundary between the biconical and decoupling FP as has
been demonstrated in [5]. For the decoupling FP the time
scales of the two OPs scale differently and weak scaling
is expected. The effective values of the dynamical critical
exponents (starting from different initial conditions)
are driven to almost stationary values. These might be
measured in neutron scattering experiments.
A natural question concerns the reliability of numerical

predictions for the observables obtained in our study.

In particular, how will an increase of the order of the
perturbation theory influence the numerical estimates. An
estimate can be given by comparing results obtained in
different perturbation theory (loop) orders. This can be
done for the static part of the RG functions, which are
currently known with a record five-loop accuracy [23]. As
it was demonstrated in ref. [5], the two-loop approximation
we consider here refined by the resummation is enough
to catch the main features of the static phase transition
(FP stability and respective universality classes) as well
as to give reliable estimates for the observable quantities
that govern the phase transition (leading exponents and
corrections to scaling). It is well known that the dynamic
RG calculations are technically much more complicated
as static ones. In particular, no higher orders of the
perturbation theory are known for the model we consider
here. However, as known from the previous experience in
the RG description of dynamical criticality [9] we expect
also in this case that the two-loop calculation captures the
essential dynamical properties, namely to be effectively in
a weak scaling situation.
The comparison between experiment and theory for
multicritical behavior is much less developed in dynamics
than in statics (see, e.g., the situation at the tricritical
point [24]). But exploring even the critical dynamics along
the two transition lines is of interest since the OP and the
condserved density are experimentally accessible. Also
computer simulation might be considered for a compari-
son [25] and explicit theoretical results are worthwhile for
the interpretation of the numerical results. Not only expo-
nents are necessary for a careful interpretation but also the
calculation of the dynamic structure factors are of interest.
This also concerns the neutron scattering experiments.
The effective values of the time scale ratios, known from
flow equations (like (8)), enter the shape functions and
may change their shape from a Lorentzian considerably.
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