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Abstract. Public transport networks of fourteen cities of so far unexplored network size are analyzed in
standardized graph representations: the simple graph of the network map, the bipartite graph of routes and
stations, and both one mode projections of the latter. Special attention is paid to the inter-relations and
spatial embedding of transport routes. This systematic approach reveals rich behavior beyond that of the
ubiquitous scale-free complex network. We find strong evidence for structures in PTNs that are counter-
intuitive and need to be explained, among these a pronounced diversity in the expression of typical network
characteristics within the present sample of cities, a surprising geometrical behavior with respect to the
two-dimensional geographical embedding and an unexpected attraction between transport routes. A simple
model based on these observations reproduces many of the identified PTN properties by growing networks
of attractive self-avoiding walks.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 07.05.Rm Data presentation and
visualization: algorithms and implementation – 89.75.Hc Networks and genealogical trees

1 Introduction

The recent general interest in networks of man-made and
natural systems has lead to the advancement of a com-
plex network science through careful analysis of various
network systems using empirical, simulational, and theo-
retical tools [1–5]. In this work we strive to identify the dis-
tinguishing properties of public transport networks (PTN)
of 14 large cities when interpreted as complex network
graphs. These networks may be expected to share general
features of other transportation networks [3] like the air-
port [6–13], railway [14], or power grid networks [6,15,16].
These features include evolutionary growth, optimization,
and usually an embedding in two dimensional (2D) space.

The evolution of a city’s PTN is closely related to the
growth of the city and therefore influenced by numerous
factors of geographical, historical, and social origin. How-
ever, there is ample evidence that PTNs of different cities
share common statistical properties that possibly arise due
to their functional purposes [17–29]. Some of these proper-
ties have been analyzed in former studies. Here, our objec-
tive is to systematically analyze PTNs in all standardized
graph representations: the simple graph of the network
map, the bipartite graph of routes and stations, and both
one mode projections of the latter and furthermore, to
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identify inter-relations and spatial embedding properties
of transport routes which are unique to PTNs. Finally,
based on the empirical observations, we embark to for-
mulate a model with simple growth rules for that gener-
ate PTNs with network characteristics matching empirical
results.

Previous studies have often analyzed specific sub-
networks of PTNs [17–20,22–24,26]. Examples are the
Boston [17–20] and Vienna [20] subway networks and the
bus networks of cities in Poland [22] and China [24,26].
However, as far as the bus-, subway- or tram-subnetworks
are not closed systems the inclusion of additional subnet-
works has significant impact on the overall network prop-
erties as has been shown for the subway and bus networks
of Boston [18,19].

All PTNs analyzed within our study are either oper-
ated by a single operator or by a small number of operators
with a coordinated schedule, as e.g. expressed by a central
website from which our data was obtained. Rather than
artificially dividing these centrally organized networks into
subnetworks of different means of transport like bus and
metro or in a ‘urban’ and an ‘sub-urban’ part we treat
each full PTN as an entity.

Our choice for the selection of fourteen major cities
(see Tab. 1) [30,31] was motivated by the idea to col-
lect network samples from cities of different geographi-
cal, cultural, and economical background. Apart from the



262 The European Physical Journal B

Table 1. Cities analyzed in this study. N : number of PTN sta-
tions; R: number of PTN routes; S: mean route length (mean
number of stations per route). Types of transport taken into
account: Bus, Electric trolleybus, Ferry, Subway, Tram, Urban
train.

City N R S Type

Berlin 2992 211 29.4 BSTU
Dallas 5366 117 59.9 B
Düsseldorf 1494 124 28.5 BST
Hamburg 8084 708 25.5 BFSTU
Hong Kong 2024 321 39.6 B
Istanbul 4043 414 31.7 BST
London 10937 922 34.2 BST
Los Angeles 44629 1881 52.9 B
Moscow 3569 679 22.2 BEST
Paris 3728 251 38.2 BS
Rome 3961 681 26.8 BT
Saõ Paolo 7215 997 58.3 B
Sydney 1978 596 16.3 B
Taipei 5311 389 70.5 B

systematic analysis explained above this choice also ex-
tends to PTNs of much larger size as compared to previous
work [21,22] which considered PTNs of typically hundreds
of stations.

This paper is organized as follows. The next Section 2
sets up and defines the different representations in which
the PTN will be analyzed, Sections 3–4.2 explore the net-
work properties in these representations. We separately
analyze in Section 3 local characteristics, such as node de-
grees and clustering coefficients, and in Section 4 global
characteristics, such as path length distributions and be-
tweenness centralities. Paragraphs 4.3 and 4.4 are devoted
to characteristics that are unique to PTNs and networks
with similar construction principles. Section 4.3 analy-
ses the phenomenon of sequences of routes proceeding
in parallel along a sequence of stations, a feature we call
‘harness’ effect. Section 4.4 analyzes the network embed-
ding in geographical space. Our findings for the statistics
of real-world PTNs are supported by simulations of an
evolutionary model of PTNs as displayed in Section 5.
Conclusions and an outlook are given in Section 6. Some
of our results have been preliminarily announced in refer-
ence [25]. Supplementary material is available to the in-
terested reader in reference [32].

2 PT network topology

A straightforward representation of a PT map in the form
of a graph represents every station by a node while the
edges correspond to the links that exist between stations
due to the PT routes servicing them (see e.g. Figs. 1,
2a). Let us first introduce a simple graph to represent
this situation, see Figure 2b. In the following we will re-
fer to this graph as the �-space graph [22] or simply as
�-space. This graph represents each station by a node,
a link between nodes indicates that there is at least one
route that services the two corresponding stations consec-
utively. No multiple links are allowed. In the analysis of

Fig. 1. (Color online) One of the networks we analyze in this
study. The Los Angeles PTN consists of R = 1881 routes and
N = 44629 stations, some of them are shown in this map.

(a) (b)

(c) (d)

(e)

Fig. 2. (Color online) (a) a simple public transport map.
Stations A–F are serviced by routes No 1 (shaded orange), No 2
(white), and No 3 (dark blue). (b) �-space graph. (c) �-space
bipartite graph. Route nodes are shown as squares. (d) �-space
graph, the complete sub-graph corresponding to route No 1 is
highlighted (shaded orange). (e) �-space graph of routes.

PTNs, this �-space representation has been used in refer-
ences [18,21–23,26].

A somewhat different concept is that of a bipartite
graph which has proven useful in the analysis of coop-
eration networks [3,33]. In this representation which we
call �-space both routes and stations are represented by
nodes [24,25,27]. Each route node is linked to all station
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Table 2. PTN characteristics in different spaces (subscripts refer to �-, �-, and �-spaces, correspondingly). k: node degree;
κ = 〈z〉/〈k〉 where z is the number of next nearest neighbors; �max, 〈�〉: maximal and mean shortest path length (10); Cb:
betweenness centrality (14); c: relation of the mean clustering coefficient to that of the classical random graph of equal size (7).
Averaging has been performed with respect to corresponding network, only the mean shortest path 〈�〉 is calculated with respect
to the largest connected component.

City 〈k�〉 κ� �max
�

〈��〉 〈C�b〉 c� 〈k�〉 κ� �max
�

〈��〉 〈C�b〉 c� 〈k�〉 κ� �max
�

〈��〉 〈C�b〉 c�

Berlin 2.58 1.96 68 18.5 2.6 × 104 52.8 56.61 11.47 5 2.9 2.9 × 103 41.9 27.56 4.43 5 2.2 1.2 × 102 4.75

Dallas 2.18 1.28 156 52.0 1.4 × 105 55.0 100.58 11.23 8 3.2 5.9 × 103 48.6 11.09 3.45 7 2.7 9.2 × 101 5.34

Düsseldorf 2.57 1.96 48 12.5 8.6 × 103 24.4 59.01 10.56 5 2.6 1.2 × 103 19.7 32.18 2.47 4 1.8 4.9 × 101 2.23

Hamburg 2.65 1.85 156 39.7 1.4 × 105 254.7 50.38 7.96 11 4.7 1.4 × 104 132.2 17.51 4.49 10 4.0 9.9 × 102 28.3

Hong Kong 3.59 3.24 60 11.0 1.0 × 104 60.3 125.67 10.20 4 2.2 1.3 × 103 11.7 98.98 2.12 3 1.7 1.2 × 102 2.14

Istanbul 2.30 1.54 131 29.7 5.7 × 104 41.0 76.88 10.59 6 3.1 4.2 × 103 41.5 52.81 3.86 5 2.3 2.6 × 102 5.00

London 2.60 1.87 107 26.5 1.4 × 105 320.6 90.60 16.97 6 3.3 1.2 × 104 90.0 49.91 6.80 6 2.6 7.4 × 102 11.1

Los Angeles 2.37 1.59 210 37.1 7.9 × 105 645.3 97.99 17.21 11 4.4 7.4 × 104 399.6 40.11 8.42 10 3.6 2.3 × 103 22.1

Moscow 3.32 6.25 27 7.0 1.1 × 104 127.4 65.47 26.48 5 2.5 2.7 × 103 38.0 109.37 4.57 4 1.9 3.2 × 102 3.59

Paris 3.73 5.32 28 6.4 1.0 × 104 78.5 50.92 24.06 5 2.7 3.1 × 103 59.6 39.95 4.67 4 1.9 1.1 × 102 2.72

Rome 2.95 2.02 87 26.4 5.0 × 104 163.4 69.05 11.34 6 3.1 4.2 × 103 41.4 59.40 4.86 5 2.5 5.1 × 102 7.04

Saõ Paolo 3.21 4.17 33 10.3 3.4 × 104 268.0 137.46 19.61 5 2.7 6.0 × 103 38.2 151.72 4.25 4 2.0 5.2 × 102 4.27

Sydney 3.33 2.54 34 12.3 7.3 × 103 82.9 42.88 7.79 7 3.0 1.3 × 103 33.6 65.02 2.92 6 2.4 3.5 × 102 6.30

Taipei 3.12 2.42 74 20.9 5.3 × 104 186.2 236.65 12.96 6 2.4 3.6 × 103 15.4 93.33 2.95 5 1.8 1.6 × 102 2.44

nodes that it services. No direct links between nodes of
the same type occur (see Fig. 2c). Obviously, in �-space
the neighbors of a given route node are all stations that
it services while the neighbors of a given station node are
all routes that service it.

There are two one-mode projections of the bipartite
graph of �-space. The projection to the set of station
nodes is the so-called �-space graph, Figure 2d. The com-
plementary projection to route nodes leads to the �-space
graph, Figure 2e, of route nodes where any two route
nodes are neighbors if they share a common station.

The �-space graph representation [14,22] has
proven particularly useful in the analysis of
PTNs [14,20,22,25,26]. The nodes of this graph are
stations and they are linked if they are serviced by at
least one common route. In this way the neighbors of a
�-space node are all stations that can be reached without
changing means of transport and each route gives rise to
a complete �-subgraph, see Figure 2d.

It is worthwhile to note the real world significance of
these seemingly abstract ‘spaces’. To give an example, the
average length of a shortest path 〈��〉 in an �-space graph
gives the average number of stops one has to pass to travel
between any two stations. When represented in �- space,
the mean shortest path 〈��〉 counts the average number of
changes one has to do to travel between two stations while
the corresponding mean �- space path length 〈��〉 counts
the average number of changes needed to pass between any
two routes. As another example let us note the node degree
k: for the �-space graph the node degree of a station is
the number of other stations within one stop distance; in
the bipartite �-space graph the degree of a station is the
number of routes servicing it, while the degree of a route
is the number of its stations; in the �-space graph the
degree k� of a station is the number of stations reachable
without changing the route; whereas in the �-space graph

the degree k� of a route is the number of other routes one
can transfer to.

Table 2 lists some of the PTN characteristics we have
obtained for the cities under consideration using publicly
available data from the web pages of local transport or-
ganizations [30,31]. To limit the data presented, this and
further tables are restricted to the basic results discussed
within this article. The interested reader may find supple-
mentary material in [32].

3 Local network properties

Let us first examine the properties of the PTNs deter-
mined by the immediate neighborhood of the nodes as
measured by its size, its interconnectedness and the cor-
relations within this neighborhood.

3.1 Neighborhood size (node degree)

The size of the neighborhood of a node as given by its
degree often indicates its importance e.g. as a hub within
the network. In large networks created by randomly con-
necting nodes, hubs are rare while in real networks they
are often found with much higher probability. Formally
this is measured by the behavior of the tail of the node
degree distribution. Denoting by p(k) the normalized node
degree distribution, the mean node degree k is given by
the average

〈k〉 =
kmax∑

k=1

p(k)k =
2M

N
. (1)

Here, M is the number of links and N the number of
edges of the graph while kmax stands for the maximal
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node degree. For the finite size Erdös-Rényi [34,35] ran-
dom graph the node degree distribution p(k) is binomial,
which for fixed 〈k〉 in the infinite case becomes a Poisson
distribution.

The higher organization of real world networks usually
leads to slower decaying distributions. Typical classes of
networks have either exponential or power law tails. Ex-
ponentially decaying distributions for large degrees k are
characterized by

p(k) ∼ exp(−k/k̂), (2)

where the scale k̂ is of the order of the mean node degree.
Scale-free degree distributions that decay according to a
power law have a tail of the form

p(k) ∼ 1/kγ . (3)

The exponent γ further classifies the network [36]. If γ < 2
the distribution has no finite average 〈k〉 in the infinite
network limit. If γ < 3 there is no finite second moment
and the network has no percolation threshold with respect
to a dilution of its nodes. Its connected component re-
mains robust against random failure of any number of its
nodes. When γ > 4, however, its percolation and other
properties are expected to be similar to those of exponen-
tially decaying networks.

Both exponential and power law decay of the degree
distribution can be modeled by assuming a non equilib-
rium growth process of the network by which in consec-
utive time steps nodes and links are added to the exist-
ing network [4]. If the added nodes are arbitrarily linked
to any of the existing nodes an exponential tail results,
however, if the probability to connect to a given exist-
ing node is a linear function of its degree one can show
that the resulting degree distribution develops a power
law tail. The latter mechanism to explain the abundant
occurrence of power laws is also referred to as preferential
attachment or ‘rich get richer’ [37–39]. As far as PTNs ob-
viously are evolving networks, their evolution may be ex-
pected to follow similar mechanisms. However, scale-free
networks have also been shown to arise when minimizing
both the effort for communication and the cost for main-
taining connections [40,41]. Moreover, this kind of opti-
mization was shown to lead to small world properties [42]
and to explain the appearance of power laws in a general
context [43]. Therefore, scale-free behavior in PTNs could
also be related to obvious objectives to optimize their op-
eration.

Figures 3 and 4 show the node degree distributions for
PTNs of several cities in �-, �-, and �-spaces. Note, that
the monotonously decreasing curves displayed for the �-
and �-spaces are cumulative distributions defined as:

P (k) =
kmax∑

q=k

p(q). (4)

The data for �- and �-spaces in Figures 3a, 3b is shown
in log-linear plots together with fits to an exponential de-
cay (2). The latter distributions are nicely described by an

(a)

(b)

(c)

Fig. 3. (a) Node degree distributions of PTN of several cities in
�-space. (b) Cumulative node degree distribution in �-space.
(c) Cumulative node degree distribution in �-space. Berlin (cir-

cles, k̂� = 1.24, k̂� = 39.7), Düsseldorf (squares, k̂� = 1.43,

k̂� = 58.8), Hong Kong (stars, k̂� = 2.50, k̂� = 125.1).

exponential decay. As far as the �-space data is concerned,
we find evidence for an exponential decay for about half
of the cities analyzed, while the other part rather follow a
power law decay (3), see Table 3.

Figures 4a, 4b show the corresponding plots for three
other cities on a log-log scale. Here, these plots are shown
together with fits to a power law (3). Numerical values of
the fit parameters k̂ and γ for different cities are given
in Table 3. Here, values in parentheses indicate a less
reliable fit. In the case when none of the equations (2),
(3) lead to reliable data, both fit parameters are given in
parentheses in the table. The typical range of data points
which could be fitted was of the order of 90% or more
both for �- and �-spaces. The value of the fit parame-
ters was considered to be reliable if the absolute value of
the Pearson correlation coefficient exceeded R� = 0.984
and R� = 0.990 in � and �-spaces, correspondingly. Ex-
ceptions from this rule are the �-space fits for the PTNs
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(a)

(b)

(c)

Fig. 4. (a) Node degree distributions of the PTNs of several
cities in �-space. (b) Cumulative node degree distributions in
�-space. (c) Cumulative node degree distribution in �-space.
London (circles, γ� = 4.48, γ� = 3.89), Los Angeles (stars,
γ� = 4.85, γ� = 3.92), Paris (squares, γ� = 2.62, γ� = 3.70).

of Paris, Rome (R� � 0.97, but 97% of data points are
covered), and London (with 72% of data points covered
and R� � 0.985). For �-space, exceptions are the PTNs
of Paris (R� = 0.993) and Saõ Paolo (R� = 0.999), where
the fit covered only ∼60% of data points. Note, that for
�-space the fit was done for the plain node degree distri-
bution p(k), whereas for �-space the parameters γ� or k̂�
were determined by fitting the cumulative distribution (4).

While the node degree distribution of almost half of
the cities in the �-space representation display a power
law decay (3), this is in general not the case for the
�-space. However, the data for the PTNs of Hamburg,
London, Los Angeles, and Paris (see Fig. 4b) give first
evidence of power law behavior of P (k) even in the
�-space representation. Previous results concerning node-
degree distributions of PTNs in �- and �-spaces [22,26]
seemed to indicate that in general the degree distribu-
tion may be power-law like in �-space but never in �-

Table 3. Parameters of the PTN node degree distributions
fit to an exponential (2) and power law (3) behavior. Brack-
eted values indicate less reliable fits. Subscripts refer to �- and
�-spaces [31].

City γ� k̂� γ� k̂�

Berlin (4.30) 1.24 (5.85) 39.7
Dallas 5.49 (0.78) (4.67) 64.2
Düsseldorf 3.76 (1.43) (4.62) (58.8)
Hamburg (4.74) 1.46 4.38 (60.7)
Hong Kong (2.99) 2.50 (4.40) 125.1
Istanbul 4.04 (1.13) (2.70) 86.7
London 4.48 (1.44) 3.89 (143.3)
Los Angeles 4.85 (1.52) 3.92 (201.0)
Moscow (3.22) (2.15) (2.91) 50.0
Paris 2.62 (3.30) 3.70 (100.0)
Rome (3.95) 1.71 (5.02) 54.8
Saõ Paolo 2.72 (4.20) (4.06) 225.0
Sydney (4.03) 1.88 (5.66) 38.7
Taipei (3.74) 1.75 (5.16) 201.0

space. This was interpreted [22] as being due to strongly
correlated connections between stations in �-space and
nearly randomly linked routes, as also expressed by a low
clustering coefficient in �-space, see below. Our present
study, which includes a much less homogeneous selection
of cities (Ref. [22] was exclusively based on Polish cities)
shows that almost any combination of different distribu-
tions in �- and �-spaces may occur. We note that even
within the small sub-group formed by Hamburg, Los An-
geles, London and Paris there is no alignment to ‘typical
behavior’.

In �-space the decay of the node degree distribution
is exponential or faster, as one can see from the plots in
Figures 3c and 4c. From the cities presented there, only
the PTNs of Berlin, London, and Los Angeles are governed
by an exponential decay.

For most cities that show a power law degree distribu-
tion in �-space the corresponding exponent γ� is γ� ∼ 4.
Also the exponents found for the PTNs of Polish cities of
similar size N lie in this region: γ� = 3.77 for Kraków
(with number of stations N = 940), γ� = 3.9 for �Lódź
(N = 1023), γ� = 3.44 for Warsaw (N = 1530) [22].
According to the general classification of scale-free net-
works [2] this indicates that in many respect these net-
works are expected to behave similar to those with expo-
nential node degree distribution. Prominent exceptions to
this rule are the PTNs of Paris (γ� = 2.62) and Saõ-Paolo
(γ� = 2.72). Note, that values of γ� in the range 2.5÷ 3.0
were recently reported for the bus networks of three cities
in China: Beijing (N = 3938), Shanghai (N = 2063), and
Nanjing (N = 1150) [26].

A conclusion from our survey of the various degree
distributions is that they appear much more diverse than
expected and that with respect to these there is no sim-
ple division of the PTNs at hand into two or even three
classes.
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3.2 Clustering

While the node degree counts the neighbors of a node, the
connectivity within its neighborhood may be quantified in
terms of the so called clustering coefficient. The latter is
defined as

Ci =
2yi

ki(ki − 1)
for ki ≥ 2, (5)

where yi is the number of links between the ki nearest
neighbors of the node i. Ci ≡ 0 for ki = 0, 1. The cluster-
ing coefficient of a node may also be defined as the prob-
ability of any two of its randomly chosen neighbors to be
connected. For the mean value of the clustering coefficient
of an Erdös-Rényi random graph one finds

〈C〉ER =
〈k〉
N

=
2M

N2
. (6)

In Table 2 we give the values of the mean clustering co-
efficient in �-, �-, and �-spaces. The highest absolute
values of the clustering coefficient are found in �-space,
where their range is given by 〈C�〉 = 0.7 ÷ 0.9 (c.f. with
〈C�〉 = 0.02÷ 0.1). This is not surprising since in �-space
each route gives rise to a fully connected (complete) sub-
graph between all of its stations. In order to make numbers
comparable we normalize the mean clustering coefficient
by that of a random graph (6) of the same size:

c = N2〈C〉/(2M). (7)

In �- and �-representations we find the mean clustering
coefficient to be larger by orders of magnitude relative
to the random graph. This difference is less pronounced
in �-space indicating a lower degree of organization in
these graphs. Most prominently, we find the values to vary
strongly within the sample of the 14 cities.

In �-space the clustering coefficient of a node is
strongly correlated with the node degree. All stations i
belonging to the complete subgraph of a single route have
Ci = 1, while Ci generally decreases if i belongs to more
than one route. Averaging the �-space clustering coeffi-
cient over all nodes with given degree k we confirm that
it decays as a function of k following a power law

〈C�(k)〉 ∼ k−β . (8)

Within a simple model of networks with star-like topol-
ogy this exponent is found to be β = 1 [22]. In transport
networks, this behavior has been observed before for the
Indian railway network [14] as well as for Polish PTNs [22].
In our case, the values of the exponent β for the networks
studied range from 0.65 (Saõ Paolo) to 0.96 (Los Angeles)
again showing significant diversity within our sample.

These obvious differences in the locally observable
structure may be assumed to reflect a strong diversity
within the concepts according to which various PTNs
are structured. Comparing the division between weak and
strongly clustered PTNs we find no alignment with the
different classes of degree distributions adding to the idea
of an individual profile of each city’s PTN with respect to
the various network characteristics.

Table 4. Nearest neighbor and next nearest neighbor assorta-
tivities r(1) and r(2) in different spaces for the whole PTN.

City r
(1)
�

r
(2)
�

r
(1)
�

r
(2)
�

r
(1)
�

r
(2)
�

Berlin 0.158 0.616 0.065 0.441 0.086 0.318
Dallas 0.150 0.712 0.154 0.728 0.290 0.550
Düsseldorf 0.083 0.650 0.041 0.494 0.244 0.180
Hamburg 0.297 0.697 0.087 0.551 0.246 0.605
Hong Kong 0.205 0.632 −0.067 0.238 0.131 0.087
Istanbul 0.176 0.726 −0.124 0.378 0.282 0.505
London 0.221 0.589 0.090 0.470 0.395 0.620
Los Angeles 0.240 0.728 0.124 0.500 0.465 0.753
Moscow 0.002 0.312 −0.041 0.296 0.208 0.011
Paris 0.064 0.344 −0.010 0.258 0.060 −0.008
Rome 0.237 0.719 0.044 0.525 0.384 0.619
Saõ Paolo −0.018 0.437 −0.047 0.266 0.211 0.418
Sydney 0.154 0.642 0.077 0.608 0.458 0.424
Taipei 0.270 0.721 0.009 0.328 0.100 0.041

3.3 Generalized assortativities

To describe correlations between the properties of neigh-
boring nodes in a network the notion of assortativity was
introduced measuring the correlation between the node
degrees of neighboring nodes in terms of the mean Pearson
correlation coefficient [44,45]. Here, we propose to general-
ize this concept to also measure correlations between the
values of other node characteristics (other observables).
For any link i let Xi and Yi be the values of the observ-
able at the two nodes connected by this link. Then the
correlation coefficient is given by:

r =
M−1

∑
i XiYi − [M−1

∑
i

1
2 (Xi + Yi)]2

M−1
∑

i
1
2 (X2

i + Y 2
i ) − [M−1

∑
i

1
2 (Xi + Yi)]2

(9)

where summation is performed with respect to the M links
of the network. Taking Xi and Yi to be the node degrees
equation (9) is equivalent to the usual formula for the
assortativity of a network [44]. Here, we will call this spe-
cial case the degree assortativity r(1). In separate work we
have investigated generalized assortativities for a number
of other network characteristics [32]. Here, besides the as-
sortativity r(1), we discuss the behavior of the generalized
assortativity r(2) for the number z of next nearest neigh-
bors. The numerical values of the assortativities r(1) and
r(2) of all PTNs are listed in Table 4 for the �-, �- and
�-spaces. With respect to the values of the standard node
degree assortativity r

(1)
�

in �-space, we find two groups of
cities. The first is characterized by values r

(1)
�

= 0.1÷ 0.3.
Although these values are still small they signal a finite
preference for assortative mixing. That is, links tend to
connect nodes of similar degree. In the second group of
cities these values are very small r

(1)
�

= −0.02÷0.08 show-
ing no preference in linkage between nodes with respect to
node degrees. PTNs of both large and medium sizes are
present in each of the groups. This indicates the absence
of correlations between network size and degree assorta-
tivity r

(1)
�

in �-space. Measuring the same quantity in the
�- and �-spaces, we observe different behavior. In �-space
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almost all cities are characterized by very small (positive
or negative) values of r

(1)
�

with the exception of the PTNs
of Istanbul (r(1)

�
= −0.12) and Los Angeles (r(1)

�
= 0.12).

On the contrary, in �-space PTNs demonstrate clear as-
sortative mixing with r

(1)
�

= 0.1÷0.5. An exception is the
PTN of Paris with r

(1)
�

= 0.06.
As we have seen above, the PTNs demonstrate assor-

tative (r(1) > 0) or neutral (r(1) ∼ 0) mixing with respect
to the node degree (first nearest neighbors number) k.
Defining an assortativity r(2) with respect to the number
z of second next nearest neighbors we explore the corre-
lation of a wider environment of adjacent nodes. Due to
the fact that in this case the two connected nodes share at
least part of this environment (the first nearest neighbors
of a node form part of the second nearest neighbors of
the adjacent node) one may expect the assortativity r(2)

to be non-negative. The results for r(2) shown in Table 4
appear to confirm this assumption. In all the spaces con-
sidered, we find that all PTNs that belong to the group of
neutral mixing with respect to k also belong to the same
group with respect to the second nearest neighbors. For
those PTNs that display significant nearest neighbors as-
sortativity r(1) we find that the second nearest neighbor
assortativity r(2) is in general even stronger in line with
the above reasoning.

From the above observations on assortativity within
our sample of PTNs we note further evidence for diversity
ranging from indefinite to clearly pronounced assortativ-
ities r

(1)
�

and r
(1)
�

which appear uncorrelated with other
properties of the network such as the size or the specific
behavior of e.g. the degree distribution.

4 Global characteristics

4.1 Shortest paths

Let �i,j be the length of a shortest path between sites
i and j in a given graph. Note, that �i,j is well-defined
only if the nodes i and j belong to the same connected
component of the graph. In the following we will restrict
considerations to the largest (so-called giant) connected
component, GCC. Denoting the path length distribution
within the GCC as Π(�), the mean shortest path is

〈�〉 =
�max∑

�=1

Π(�)�, (10)

where �max is the maximal shortest path length found
within the GCC. In general, the shortest path length dis-
tributions obtained in �-, �-, and �-spaces that we have
analyzed [32] are nicely described by an asymmetric uni-
modal distribution [22]:

Π(�) = A� exp (−B�2 + C�), (11)

where A, B, and C are parameters. However, additional
structures may lead to deviations from this behavior as

Fig. 5. Shortest path length distribution in �-space, P�(�), for
the PTN of Los Angeles.

can be seen from Figure 5, which shows the mean shortest
path length distribution in �-space P�(�) for Los Angeles.
One observes a second local maximum on the right shoul-
der of the distribution. Qualitatively this behavior may be
explained by assuming that the PTN consists of more than
one community. For the simple case of one large commu-
nity and a second smaller one at some distance this situa-
tion will result in short intra-community paths which will
give rise to a global maximum and a set of longer paths
that connect the larger to the smaller community result-
ing in additional local maxima. Such a situation definitely
appears to be present in the case of the Los Angeles PTN,
see Figure 1.

Of particular interest is the mean shortest path length
between nodes of given degrees k and q, �(k, q). As has
been shown in [46], this relation can be approximated by

�(k, q) = A − B log(kq). (12)

For random networks the coefficients A and B can be cal-
culated exactly [47]. A rather good agreement with equa-
tion (12) was found for the majority of the �-space graphs
of Polish PTNs analyzed in [22]. Within our study which
includes PTNs of much larger size, we do not observe a
similar alignment for all cities. The suggested logarithmic
dependence (12) does occur also for the �-space graphs of
larger cities, however, with a much more pronounced scat-
ter of data for large values of the product kq. In Figure 6
we plot the mean path ��(k, q) for the �-space graphs of
the PTNs of Berlin, Hong Kong, Rome, and Taipei, where
the relation (12) is observed with better accuracy. Note,
however, that due to the scatter of data a logarithmic de-
pendence frequently is indistinguishable from a power law
with a small exponent.

The dependency of the average path length on the de-
grees of both end nodes of the path may be reduced to a
dependency on the degree of a single end node. We define
�(k), the mean shortest path between any node of degree k
and other nodes of the network. For the majority of the
analyzed cities the dependence of the mean path ��(k) on
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Fig. 6. Mean �-space paths ��(k, q) as function of kq for the
PTNs of Berlin (stars), Hong Kong (circles), Rome (triangles),
and Taipei (squares).

the node degree k in �-space can be approximated by a
power law

��(k) ∼ k−α� . (13)

We find that the value of the exponent varies in the range
α� = 0.17 ÷ 0.27. It is instructive to compare this re-
sult with results obtained in reference [48] for the same
characteristics calculated for correlated growing networks.
For deterministic scale-free networks �(k) was found to be
characterized by a logarithmic law with power-law correc-
tions, whereas for stochastic scale-free networks �(k) was
shown to follow logarithmic behaviour. Furthermore, net-
works with an exponential node-degree distribution dis-
played a linear law �(k) ∼ a − bk. Obviously, the small
values of the exponent α� found for the PTNs in our
study do not exclude a logarithmic law, however the lin-
ear dependence can be ruled out. Note, that within our
sample of PTNs one finds both scale-free and exponential
node degree distributions. However, an essential difference
between the construction principles of PTNs and of the
graphs of reference [48] is that the latter are so-called
‘citation graphs’ (where new connections do not emerge
between already existing nodes), whereas there is no such
restriction for PTNs.

In �-space, the shortest path length �ij gives the min-
imal number of routes required to be used in order to
reach site j starting from the site i. The higher the node
degree, the easier it is to access other routes in the net-
work. Therefore, also in �-space one expects a decrease of
��(k) when k increases. Apart from an expected decrease
we find a tendency to a power-law decay with small pow-
ers, sometimes almost indistinguishable from a logarith-
mic behavior. The value of the exponent α� varies in the
interval α� = 0.09 (for Sydney) to α� = 0.17 (for Dallas)
and is centered around α� = 0.12 ÷ 0.13. The mean path
��(k, q) is found to decrease as a function of kq also in
�-space, but with much more pronounced scattering than
in �-space. An analysis of further characteristics related
to shortest path lengths �ij can be found in [32].

Concluding we note that the mean lengths of the short-
est paths as function of the end node degrees show no
special structure within the sample of PTNs studied. In

(a) (b)

(c) (d)

Fig. 7. Mean betweenness centrality 〈Cb(k)〉 - degree k cor-
relations for the PTN of Paris in (a) �-, (b) �-, (c) �-, and
(d) �-spaces.

general the observed behavior does not significantly de-
viate from the logarithmic behavior that is expected for
random graphs.

4.2 Betweenness centrality

To measure the importance of a given node with respect to
different properties of a graph a number of so-called cen-
trality measures have been introduced [49–53]. Referring
the interested reader to reference [32] for a more extensive
survey on centrality measures of PTNs, we here discuss
data related to the betweenness centrality which measures
the importance of a node with respect to the connectiv-
ity between other nodes of the network. The betweenness
centrality Cb(i) of a node i is calculated as

Cb(i) =
∑

j �=i�=k

σjk(i)
σjk

, (14)

where σjk is the number of shortest paths between nodes
j and k and σjk(i) is the number of these paths that go
via node i. Numerical values of the mean betweenness cen-
trality (14) are given in Table 1 for the �-, �- and �-space
graphs.

The betweenness centrality (14) of a given node mea-
sures the share of the shortest paths between nodes that
this node mediates. It is obvious that a node with a high
degree has a higher probability to be part of any path
connecting other nodes. This relation between Cb and the
node degree may be quantified by plotting the mean be-
tweenness centrality 〈Cb(k)〉 averaged among nodes with
degree k as function of k. In Figures 7 we present corre-
sponding results for the PTN of Paris in �-, �-, �-, and
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�-spaces. Especially well expressed is the betweenness-
degree correlation in �-space (Fig. 7a) and with somewhat
less precision in �-space (Fig. 7b). In both cases there is
a clear tendency to a power law 〈Cb(k)〉 ∼ kη with an
exponent η = 2 ÷ 3.

In the plots for both �- and �-spaces we observe the
occurrence of two regimes which correspond to small and
large degrees k. This separation however has a different
origin in each of these cases. In the �-space representa-
tion, the network consists of nodes of two types, route
nodes and station nodes. Typically, station nodes are con-
nected only to a low number of routes while there is a min-
imal number of stations per route. One may thus identify
the low degree behavior as describing the betweenness of
station nodes, while the high degree behavior corresponds
to that of route nodes. In the overlap region of the two
regimes one may observe that when having the same de-
gree station nodes have a higher betweenness than route
nodes.

In the �-space representation on the other hand, the
occurrence of two regimes is a feature of this representa-
tion. Stations that are part of only a single route and thus
within the �-graph belong only to the complete subgraph
corresponding to this route (recall Fig. 2d) are not part of
any shortest �-space path between other nodes and have
a betweenness centrality of Cb = 0. The decreasing con-
tribution of these stations to the average 〈Cb(k)〉 leads a
steep slope in the low degree regime. For degrees higher
than the maximal route length these stations no longer
contribute and the slope rather describes the correlation
between the degree and finite mean betweenness values.
Instead of a steep slope in the low degree regime refer-
ence [22] observes a saturation; this may be due to an
exclusion of the zero-betweenness nodes from the average.
Very similar betweenness – degree relations as shown in
Figure 7 are found for most of the other cities in our sam-
ple with slightly varying quality of expression. We em-
phasize however, that this uniformity of the correlation
between the degrees of the nodes and their respective be-
tweenness is strictly speaking valid only for the average
value 〈Cb(k)〉. When analyzing the importance of indi-
vidual nodes e.g. with respect to the vulnerability of the
network against failure or attack the betweenness central-
ity turns out to be a much more sensitive measure than
the node degree [29].

4.3 Harness

Besides the local and global properties of networks de-
scribed above which can be defined in any type of net-
work, there are some characteristics that are unique for
PTNs and networks with similar construction principles.
A particularly striking example is the fact that as far as
the routes share the same grid of streets and tracks often a
number of routes will proceed in parallel along shorter or
longer sequences of stations. Similar phenomena are ob-
served in networks built with space consuming links such
as cables, pipes, neurons, etc. In the present case this be-
havior may be easily worked out on the basis of sequences

(a) (b)

Fig. 8. Cumulative harness distributions. (a) Istanbul PTN
(s = 2(�), 6(◦), 11(�), 16(�), 21(♦)). (b) Moscow PTN s =
3(�), 6(◦), 9(�), 11(�)).

(a) (b)

Fig. 9. Cumulative harness distributions for Los Angeles PTN.
From above: s = 2(�), 4(◦), 6(�), 9(�), 13(♦), 17(�), 21(�)
26(◦). (a) log-log scale; (b) log-linear scale.

of stations serviced by each route. To quantify this be-
havior we use the recently introduced notion of network
harness [25]. It is described by the harness distribution
P (r, s): the number of sequences of s consecutive stations
that are serviced by r parallel routes. Similar to the node-
degree distributions, we observe that the harness distribu-
tion for some cities (Hong Kong, Istanbul, Paris, Rome,
Saõ Paolo, Sydney) may be described by a power law:

P (r, s) ∼ r−γs , for fixed s, (15)

whereas the PTNs of other cities (Berlin, Dallas,
Düsseldorf, London, Moscow) are better described by an
exponential decay:

P (r, s) ∼ exp (−r/r̂s), for fixed s. (16)

As examples we show the harness distributions for Istan-
bul (Fig. 8a) and for Moscow (Fig. 8b). Sometimes (we ob-
serve this for Los Angeles and Taipei), there is a crossover
from a power law to an exponential regime for larger s.
We show this crossover for the PTN of Los Angeles in
Figure 9, where it is particularly obvious.

As one can observe in Figures 8, 9 the harness distribu-
tion P (r, s) for fixed s decays faster for longer sequences
s. For PTNs for which the harness distribution follows a
power law (15) the corresponding exponents γs are found
in the range of γs = 2 ÷ 4. For those distributions with
an exponential decay the scale r̂s (16) varies in the range
r̂s = 1.5 ÷ 4. The power laws observed for the behav-
ior of P (r, s) indicate a certain level of organization and
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planning which may be driven by the need to minimize
the costs of infrastructure and secondly by the fact that
points of interest tend to be clustered in certain locations
of a city. Note, that this effect may be seen as a result of
the strong interdependence of the evolutions of both the
city and its PTN.

As noted above, the notion of harness may be use-
ful also for the description of other networks with similar
properties. On the one hand, the harness distribution is
closely related to distributions of flow and load on the
network. On the other hand, in the situation of space-
consuming links (such as tracks, cables, neurons, or pipes)
the information about the harness behavior may be impor-
tant with respect to the spatial optimization of networks.

From our observations we conclude that there is strong
evidence for a significant harness effect within the organi-
zation of PTN networks according to which network routes
are often found aligned following the same geographical
path along segments of varying length and ‘thickness’. The
details of the harness distribution which quantifies this be-
havior however differ considerably adding to the diversity
of behavior found within our PTN sample for many of the
properties measured.

It should be emphasized that with respect to network
optimization the harness property may at first seem com-
pletely counter-intuitive: why should a route that is e.g.
added to the network follow the path of previous, already
existing routes, instead of exploring yet unserviced nearby
areas? We may name at least two possible reasons for
the empirically confirmed harness behavior: the first is
the minimization of the cost for infrastructure which is
most evident for means of transport that need tracks but
relevant also with respect to maintaining e.g. bus stops.
Other, more operation related reasons are those of inter-
connectivity minimizing the effort needed to change from
one route to the other and of system redundancy, ensur-
ing a higher transport frequency on important segments
of the routes.

Related unexpected behavior of the routes concerning
their geographical embedding is observed and discussed in
the following section.

4.4 Geographical embedding

So far, we have discussed the properties of PTNs without
reference to their geographical embedding. The fact that
this subject has so far been left aside also by previous
studies of PTNs with respect to their complex network
behavior, is due mainly to the lack of easily accessible
data on the locations of stations and routes. Note, how-
ever, a study on the fractal dimension of railway networks,
reference [54]. For the present work we have been able to
obtain such data for stations of the Berlin PTN as well
as for those of the metro subnetwork of Paris. For the
Berlin network the positions of the stations were extracted
in an automated way from interactive maps provided on
the web-pages of the operator [55] which (invisibly) con-
tain the geographical coordinates of the stations. For the

(a) (b)

Fig. 10. Distance – path length – relation 〈R2(�)〉 in compari-
son with that of a two dimensional self-avoiding walk (solid
line, ∼�3/2) for (a) different means of transport within the
Berlin PTN (bus(�), tram (◦), u-bahn (�), s-bahn (�), simu-
lated city (•), and (b) for the Paris metro network.

Metro network of Paris these coordinates were retrieved
by hand using a free web based map service [56].

The question we pose here is, what is the distance R
between initial and final stations of a passenger’s journey
traveling for � stops on a single route? For routes opti-
mizing the time of passenger travel a naive consideration
might lead to the expectation of distance growing linearly
with path length � at least on larger scales. Surprisingly,
the empirical data show quite a different behavior (see
Fig. 10). For all means of transport analyzed within the
Berlin PTN as well as for the metro network the depen-
dence of the mean square distance 〈R2(�)〉 on � is well
described by a power law

〈R2(�)〉 ∼ �2ν (17)

with an exponent ν that is significantly smaller than one.
For most transport routes this exponent appears to be
near to ν = 3/4, which is the well known self-avoiding walk
(or Flory-) exponent in two dimensions [57] corresponding
to a fractal dimension of D ∼ 1.33. For the different Berlin
subnetworks we find exponents ranging from ν = 0.82 for
the bus routes to ν = 0.9 and 0.96 for the subway and tram
routes. The s-bahn data is distorted due to a ring structure
within this sub-network. The Paris metro data supports
an exponent of ν = 0.82 when excluding the short distance
contributions. For comparison, the fractal dimensions D
of some regional railway networks (not individual routes)
reported in reference [54] are of the order D ∼ 1.5 ÷ 1.8.

Self-avoiding walks, apart from observing the con-
straint of non-self-intersection evolve randomly. The fact
that PT routes at least within the present sample appear
to display the same scaling symmetry is quite unexpected.
In particular, this behavior seems to be at odds with the
requirement of minimizing passengers traveling time be-
tween origin to destination. The latter argument, however,
ignores the time passengers spend walking to the initial
and from the final stations. Including these, one under-
stands the need for the routes to cover larger areas by me-
andering through neighborhoods. Given the requirements
for a PTN to cover a metropolitan area with a limited
number of routes while simultaneously offering fast trans-
port across the city one may speculate that routes scaling
like SAWs may present an optimal solution. Further re-
search is obviously needed to support this claim.
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5 Modeling PTNs

5.1 Motivation and description of the model

Having at hand the above described wealth of empirical
data and analysis with respect to typical scenarios found
in a variety of real-world PTNs we feel in the position
to propose a model that may capture the characteristic
features of these networks. In view of the diversity found
in our sample, it would be in vein to try to construct a
model that quantitatively reproduces the data of a given
city. The aim of the present model is to show that a few
simple rules and a low number of parameters suffice to
generate PTNs that display profiles which with respect
to most observables are within the range of those found
in real world PTNs. Nonetheless it should be capable of
discriminating between some of the various scenarios ob-
served.

Essential basic properties of PTNs that we intend to
implement or reproduce within our model are the follow-
ing: (a) the model is to be based on routes and stations and
allow for �- �- �- and �-space representations; (b) the
model should be embedded in two dimensions and repro-
duce the SAW scaling behavior of the routes; (c) the model
should be able to generate realistic degree distributions;
(d) the model must generate realistic harness distribu-
tions.

If we were only to reproduce the degree distribu-
tion of the network, standard models such as random
networks [4,58] or preferential attachment type mod-
els [6,39,59–62] would suffice. The evolution of such net-
works however is based on the attachment of nodes. For
the description of PTNs the concept of routes as finite
sequences of stations is essential [5,23,25,28] and allows
for the representation with respect to the spaces defined
above. Moreover, taking a route as the essential element
of PTN growth allows to account for the bipartite struc-
ture of this network [20,24,27,33]. Therefore, the growth
dynamics in terms of routes will be a central ingredient of
our model. Another obvious requirement is the embedding
of this model in two-dimensional space. To simplify mat-
ters we will restrict the model to a two-dimensional grid,
in particular to a square lattice. Both the observations of
power law degree distributions as well as the occurrence
of the corresponding harness distributions described above
indicate a preference of routes to service common stations
(i.e. an attraction between routes).

Let us describe our model in more detail. As noticed
above, a route will be modeled as a sequence of stations
that are adjacent nodes on a two-dimensional square lat-
tice. Following the observation of SAW scaling symmetry
for the geographical embedding we choose each PTN route
to be a self-avoiding walk. To incorporate all the above fea-
tures the model is set up as follows. A model PTN consists
of R routes each with S stations constructed on a possibly
periodic X ×X square lattice. The dynamics of the route
generation adheres to the following rules:
1. Construct the first route as a SAW of S lattice sites.
2. Construct the R − 1 subsequent routes as SAWs with

the following preferential attachment rules:

(a) choose a terminal station at x0 with probability

p ∼ kx0 + a/X2; (18)

(b) choose any subsequent station x of the route with
probability

p ∼ kx + b. (19)

In (18), (19) kx is the number of times the lattice site x
has been visited before (the number of routes that pass
through x). Note, that to ensure the SAW property any
route that intersects itself is discarded and its construction
is restarted with step 2a).

5.2 Global topology of model PTN

Let us first investigate the global topology of this model as
function of its parameters. We first fix both the number of
routes R and the number of stations S per route as well as
the size of the lattice X . This leaves us with essentially two
parameters a and b, equations (18), (19). Dependencies on
R and S will be studied below.

For the real-world PTNs as studied in the previous
sections, almost all stations belong to a single component,
GCC, with the possible exception of a very small number
of routes. Within the network however we often observe
the harness effect of several routes proceeding in parallel
for a sequence of stations. Let us first investigate from a
global point of view which parameters a and b reproduce
realistic maps of PTNs. In Figure 11 we show simulated
PTNs on lattices 300 × 300 for R = 1024, S = 64 and
different values of the parameters a and b. Each route is
represented by a continuous line tracing the path along its
sequence of stations. For representation purposes, parallel
routes are shown slightly shifted. Thus, the line thickness
and intensity of colors indicate the density of the routes.

The parameter a quantifies the possibility to start a
new route outside the existing network. For vanishing
a = 0 the resulting network always consists of a single
connected component, while for finite values of a a few
or many disconnected components may occur. The results
for a = 0 and varying b parameters are independent of the
lattice size X provided X is sufficiently large to accom-
modate the network without boundary effects. Parameter
b governs the evolution of each single subsequent route. If
a = 0 and b = 0 the only allowed sites according to equa-
tions (18), (19) are those of the first SAW route as far as
the choice is restricted to sites x with a finite number kx

of previous visits. The shape variation of the simulated
PTNs as b is increased for fixed a = 0 is shown in the
first row of Figure 11. For small values of b = 0 ÷ 0.1
almost all routes of the simulated PTN follow the same
path with only a few deviations. Shifting b to b = 0.2
the area covered by the routes increases while the major-
ity of the routes are concentrated on a small number of
paths. Further shifting b to b = 0.5 and beyond we find
a wider distributed coverage with the central part of the
network remaining the most densely covered area. This is
due to the non-equilibrium growth process described by
equations (18), (19).
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Fig. 11. (Color online) PTN maps of different simulated cities of size 300 × 300 with R = 1024 routes of S = 64 stations each
(color online). First row: a = 0, b = 0.1 ÷ 0.5. Second row: b = 0.5, a = 15 ÷ 500. With an increase of b routes cover more and
more area. Increase of a leads to clusterisation of the network.

Table 5. Characteristics of the simulated PTN with X = 300, a = 0 for different parameters R, S, and b. The rest of notations
as in Table 2.

R S b 〈k�〉 κ� �max
� 〈��〉 〈C�b〉 〈k�〉 κ� �max

� 〈��〉 〈C�b〉 c� 〈k�〉 κ� �max
� 〈��〉 〈C�b〉 c�

256 16 0.5 2.92 1.66 61 20.8 4.7 × 103 44.15 3.18 7 3.0 4.7 × 102 7.98 86.39 1.36 6 1.9 1.2 × 102 2.22
256 16 5.0 2.99 1.74 80 21.7 7.5 × 103 42.95 3.76 9 3.4 8.8 × 102 11.7 59.96 1.99 8 2.2 1.5 × 102 2.79
256 32 0.5 2.76 1.60 127 38.1 3.0 × 104 84.45 4.32 8 3.3 1.9 × 103 13.6 60.51 1.75 7 2.2 1.6 × 102 2.90
256 32 5.0 2.90 1.72 177 43.1 5.3 × 104 74.24 5.22 10 4.0 3.8 × 103 23.7 33.06 2.69 9 2.8 2.3 × 102 4.55
512 16 0.5 2.95 1.68 73 22.5 6.7 × 103 50.07 3.39 7 3.1 6.5 × 102 9.14 169.7 1.44 6 1.9 2.3 × 102 2.25
512 16 5.0 3.12 1.78 80 23.3 1.0 × 104 51.56 3.79 10 3.5 1.2 × 103 12.3 115.3 2.24 9 2.1 2.9 × 102 2.88
512 32 0.5 2.83 1.63 166 44.2 4.7 × 104 99.53 4.56 10 3.6 2.8 × 103 15.7 118.4 2.03 9 2.2 3.0 × 102 2.92
512 32 5.0 3.12 1.79 175 44.6 7.2 × 104 97.05 5.37 9 3.9 4.7 × 103 22.2 60.36 3.08 8 2.7 4.4 × 102 5.04
1024 64 0.5 2.86 1.66 325 80.7 3.3 × 105 242.2 6.32 9 3.7 1.1 × 104 23.4 213.3 2.42 8 2.2 6.1 × 102 3.10
1024 64 1.0 2.97 1.72 355 88.5 4.8 × 105 222.2 6.74 12 4.2 1.7 × 104 32.4 143.9 2.97 11 2.5 7.9 × 102 4.39

When introducing a finite a parameter, new routes
may be started anywhere on the lattice which results in
a lattice size dependency. To partly compensate for this,
the impact of a is normalized by X2 in (18). The vari-
ation of the simulated PTN maps for increasing a and
fixed b = 0.5 is shown in the second row of Figure 11. For
a < 15 one observes the formation of a single large cluster
with only a few individual routes occurring outside this
cluster. Slightly increasing a beyond a = 15 one finds a
sharp transition to a situation with several (two or more)
clusters. For much larger values of a the number of clus-
ters further increases and the situation becomes more and
more homogeneous: the routes tend to cover all available
lattice space area.

5.3 Statistical characteristics of model PTN

From the above qualitative investigation we conclude that
realistic PTN maps are obtained for small or vanishing a

and b ≥ 0.5. In the following we will fix a = 0 and X large
enough as discussed above. To quantitatively investigate
the behavior of the simulated networks on the remain-
ing parameters including R and S let us now compare
their statistical characteristics with those we have empiri-
cally obtained for real-world networks. In Table 5 we have
chosen to list the same characteristics of the simulated
PTNs as selected for the real-world networks in Table 2.
To provide for additional checks of the correlations be-
tween simulated and real-world networks, we present the
characteristics in all �-, �-, and �-spaces. Let us note
that our choice of the underlying grid to be a square lat-
tice limits the number of nearest neighbors of a given sta-
tion in �-space to k� ≤ 4. Moreover, as far as no direct
links between these neighbors occur, the clustering coef-
ficient in �-space vanishes, c� = 0. Nonetheless, as we
discuss below, both characteristics display nontrivial be-
havior similar to real-world networks when measured for
�- and �-spaces.
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(a) (b)

Fig. 12. Cumulative node degree distributions P (k) (4) for
several simulated PTNs in (a) �- and (b) �-spaces. R =
256, S = 16 (◦), R = 256, S = 32 (•), R = 512, S = 16 (�),
R = 512, S = 32 (�), R = 1024, S = 16 (�), R = 1024, S =
32 (�).

As noted above we choose a vanishing parameter a = 0
and b = 0.5 and for comparison b = 5.0. The data shown
in the Table was obtained for simulated PTNs of different
numbers of routes, R = 256, 512, 1024 and route lengths
S = 16, 32, 64. In the range of parameters covered in the
Table we observe only weak changes of the various charac-
teristics. Natural trends are that with the increase of the
number of routes R the maximal and mean shortest path
length increases in all spaces. This is most pronounced in
�-space, while it is weakest in �-space. A similar increase
is observed in �-space when increasing the number of sta-
tions S per route. Choosing the values of R in the range
R = 256÷1024 and S = 16, S = 32 the average and max-
imal values of the characteristics studied here are found
within the ranges seen for real-world PTNs, see Table 2.
More detailed information is contained in the distributions
of these characteristics and their correlations.

Let us examine the node degree distributions of some
selected PTNs. As explained above, the �-space degrees
are restricted by the geometry of the underlying square
lattice. Thus we may observe non-trivial distributions only
in �-, �-, and �-spaces. The cumulative node degree dis-
tributions in �-space are shown in Figure 12a. All these
distributions display two regions each governed by an ex-
ponential decay with a separate scale. Note, that increas-
ing both S and R leads to an increase of the ranges over
which these regions extend. This is in line with the results
for real world PTNs found in previous studies [22,26] as
well as in Section 3. Within the parameter ranges chosen
here the current model does not seem to attain a power
law node degree distribution in �-space.

Comparing the �-space node degree distributions for
real-world and simulated PTNs (Figs. 3c and 12b, corre-
spondingly) one again finds a definite tendency to an ex-
ponential behavior with two different scales in both cases.
As can be expected we observe that the scale of the expo-
nential decay increases with the number of routes R while
it decreases with the number of stations per route S.

Cumulative harness distributions P (r, s) for two sim-
ulated networks with different values of the parameter b
(b = 0.2, b = 1.0) are shown in Figure 13. These appear to
reproduce the harness behavior of real world networks as
given in Figures 8 and 9. Both exponential and scale-free

(a) (b)

Fig. 13. Cumulative harness distributions P (r, s) for the sim-
ulated PTN with R = 256, S = 32. (a) a = 0, b = 0.2, s =
2(�), 4(◦), 6(�), 11(�), 16(♦). (b) a = 0, b = 1.0, s = 2(�),
3(◦), 4(�), 5(�), 6(♦), 7(�). Compare with plots in Figures 8, 9
for the real-world networks.

behavior as observed for the real-world PTNs is found.
A prominent feature demonstrated by Figure 13 is that
one can tune the decay behavior by changing the param-
eter b. For small values of b the probability of a route
to proceed in parallel with other routes is high. Thus for
small b the P (r, s) distribution shows a high probability
for the formation of ‘hubs’ of parallel routes as reflected
by its power-law decay distribution. For larger b such hubs
are suppressed as shown by the exponential decay of their
distribution.

Summarizing, the comparison of the statistical char-
acteristics of real world networks with those of simu-
lated ones one can definitely state that the model pro-
posed above captures many essential features of real world
PTNs. This is especially evident if one includes into the
the comparison different network representations (differ-
ent spaces) as performed above.

6 Conclusions

This paper was driven by two main objectives towards
the analysis of urban public transport networks. First, we
wanted to present a systematic survey of statistical prop-
erties of PTNs based on the data for cities of so far unex-
plored network size. The second objective was to present
a model that with a small number of simple rules would
be capable to reproduce the main properties.

Especially helpful in our analysis was the use of differ-
ent network representations (different spaces, introduced
in Sect. 2). Whereas former PTN studies used some of
these, here within a systematic approach we calculate
PTN characteristics as they show up in all �-, �-, �-,
and �-spaces.

The networks under consideration appear to be
strongly correlated small-world structures with high val-
ues of clustering coefficients and comparatively low mean
shortest path values. Standard network characteristics
that we find in these various representations correspond
to features a passenger is interested in when using public
transport. For example, any two stops in Paris are on the
average separated by 〈��〉−1 = 5.4 stations (with a maxi-
mal value of 27) and to travel between them one should do
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〈��〉−1 = 1.7 changes on average. The power-law node de-
gree distributions observed for many networks in �- and
for some in �-space give strong evidence of correlations
within these networks. However, for the properties of de-
gree distributions as well as for features of these networks,
such as clustering, assortativity and others we find consid-
erable diversity in their expression. Recent work on urban
street networks found classifications that discriminate be-
tween properties of different classes of city organization.
For the present sample of PTNs however, we conclude
that there is no simple division of the PTNs we studied
into well defined groups as e.g. seen for street and canal
networks [63,64] where a division into a few groups was
found (however analyzing only small areas of city maps).
This result is far from obvious: one might have expected
that networks all set up in large urban areas and serv-
ing an almost identical purpose would turn out to display
strongly aligned properties. However, this diversity is an
empirical fact and one that would remain hidden if we had
restricted our observations to only a handful of measure-
ments.

Beyond traditional network characteristics there are
specific features unique to PTNs and networks with simi-
lar construction principles that we have addressed. In par-
ticular, public transport routes are often found to proceed
in parallel for a sequence of stations. While the very fact
that several routes should follow the same path may seem
counter-intuitive (why should a route retrace another’s
path instead of exploring nearby unserviced areas?), we
have quantified this behavior in terms of the harness dis-
tribution and given possible explanations noting costs of
infrastructure, and operational advantages such as system
redundancy. The harness concept may also be useful for a
quantitative description of other embedded networks with
real space links such as cables, pipes, or neurons etc.

Moreover, our analysis of the geographical data for
Berlin and Paris reveals a self-avoiding walk scaling of
PTN routes a fact strongly supported by the empirical
study which again appears to be counter-intuitive (should
a line not be straight to minimize time of travel). We give a
first explanation speculating that this shape of the routes
may result from an optimization with respect to total pas-
senger traveling time, area coverage and costs of operation.

The network growth model that we developed captures
both of these special features of PTN as well as generating
profiles of network characteristics in the various represen-
tations which are in line with those found for real world
PTNs. By varying only a single parameter one may e.g.
discriminate between scale-free and exponential harness
distributions, both of which are observed in real cities. The
method used, a non equilibrium growth model in terms of
attractive self-avoiding walks (SAW) on a square lattice
may further be extended to study the effects of geograph-
ical constraints e.g. coast-lines, rivers and bridges or dis-
order. Note in this context that SAW-scaling is unaffected
by weak disorder [65].

Obviously, the two objectives in the PTN study we
have so far achieved in this paper – the empirical analysis
and the modeling – naturally call for an analytic approach.

This will be a task for forthcoming studies. Another nat-
ural continuation of this work will be the analysis of dif-
ferent possibly dynamic phenomena that may occur on
and with PTNs. Of particular interest is the robustness of
PTNs against targeted attacks and random failures [29].

Yu.H. acknowledges support of the Austrian FWF project
19583-PHY.
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0111222; S. Valverde, R.F. i Cancho, R.V. Solé, Europhys.
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