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Abstract. The behaviour of complex networks under failure or attack depends 

strongly on the specific scenario. Of special interest are scale-free networks, 

which are usually seen as robust under random failure but appear to be 

especially vulnerable to targeted attacks. In a recent study of public transport 

networks of 14 major cities of the world we have shown that these systems 

when represented by appropriate graphs may exhibit scale-free behaviour. In 

this paper we briefly review some of the recent results about the effects that 

defunct or removed nodes have on the properties of public transport networks.  

Simulating different directed attack strategies, we derive vulnerability criteria 

that result in minimal strategies with high impact on these systems. 

1. Introduction 

Since the last decade we witness how  ideas and methods of graph theory merge 

with those of statistical physics and give rise to complex network science [1]. The 

emergence of complex network theory is accompanied by a very fruitful 

interdisciplinary interaction with different branches of natural and social sciences 

where some of the present concepts had been originally developed and even in 

humanities. The fact that many natural and man-made structures have a network 

topology and in many instances such networks have much in common, allows for a 

common basis of deeper understanding of different phenomena that occur on such 

networks and for their quantitative description.1 The specific type of networks we 

address in this paper are public transport networks [2-14], that provide an instance of 
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the more general class of transportation networks. While for many structures 

modelled by complex networks the network topology is not immediately apparent and 

can be recovered only in the course of a thorough analysis of their subtle features, in 

the case of public transportation the network structure is obvious and it is even fixed 

in the commonly used term „public transport network“ (PTN). However, as we will 

see below, there are other, less obvious, options to represent a PTN in the form of a 

graph [2,4,5,10,15], which results from the fact that its structure is richer than that of 

a generic complex network. One can discriminate between two main directions of 

research in the field of complex networks: on the one hand, one is interested in the 

structural properties of complex networks, on the other hand, one analyzes different 

phenomena that occur on networks. Our recent analysis of PTN [10-14] shares goals 

of both of these directions: on the one hand, we analyze topological properties of PTN 

of 14 major cities of the world [10,11], on the other hand, we address particular 

processes that may and do occur  on PTN [12-13]. Concerning the latter case we 

analysed effects that defunct or removed nodes have on the properties of PTN.  

Simulating different directed attack strategies, we derived vulnerability criteria that 

result in minimal strategies with high impact on these systems. In this paper we 

briefly review some of our recent results on the behaviour of PTN under random 

failure or directed attack. 

  

 

 

 

 

Fig. 1. Representation of a PTN in graph form. L'-space: filled circles represent stations 

serviced by two different  routes shown by a bold and a thin line. L-space: reduction of  L' to a 

simple graph with single links. P-space: any two stations that are serviced by a common route 

are linked. B-space: stations (filled circles) are  linked to the routes (open circles) they belong 

to. C-space:    routes (open circles) are connected when they share a common station 

2. PTN representation  

The question how the characteristics of a complex network change when 

some of its constituents are removed has many important practical implementations. 

Below, we will call such a removal an attack. The notion of attack vulnerability of a 

network originates from studies of computer networks and denotes the decrease of 

network performance that is caused by removal of its nodes and/or links. In 

pioneering studies of attack vulnerability of complex networks it was found that their 

reaction may range from a well-expressed robustness to high vulnerability when the 
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attack scenario is varied [16] . In the case of a PTN, knowledge about its vulnerability 

allows both to take measures to protect its most vulnerable components as well as to 

possibly increase its resilience by planning its further development and evolution.  

To generate this knowledge we performed a thorough analysis of the 

behaviour under attack of PTNs of 14 major cities of the world, taking cities from 

different continents, with different concepts of planning and different history. In our 

sample, the number of stations N  and routes M  ranged from 1544=N , 

124=M  (Düsseldorf) to 46244=N , 1893=M  (Los Angeles). This allowed 

us to produce a reliable statistics and to access some unique features of the networks 

under consideration. 

There are many different ways to represent a PTN of a city in the form of a 

graph, some of such representations – ‘spaces’ - are discussed in Refs. [2,4,5,10,15] 

and illustrated in Figs.1,2. The primary network topology is defined by a set of routes 

each servicing an ordered series of given stations this may either be interpreted as a 

multigraph allowing for multiple edges (L’-space) or as a simple graph (L-space 

[2,4]), a number of additional neighbourhood relations may be defined both for the 

routes and the stations. E.g. one can define  two stations as neighbours whenever they 

are serviced by a common route (P-space [15]). Further, one may define a bipartite 

graph (B-space) consisting of two classes of nodes: one class representing stations, 

the other the routes with the obvious relation between routes and stations defining the 

edges of this bipartite graph. From this one may recover the P-space graph by 

projection on the station nodes while the complementary projection on route nodes 

will generate a (C-space) graph describing the neighbourhood relations between 

routes. In the analysis given below we make use of both  L- and P-representations and 

also give an outlook on how the B-space representation may be employed. We will 

first look into different characteristics of PTN calculated for the corresponding graphs 

and then analyse attacks and measure how these change these characteristics.  

 

  

Fig. 2. The PTN of Berlin (left): Interpreting the stations as vertices and the lines as links 

(identifying multiple edges) results in an L-space graph. Right: The sub-network of nodes 

(links shown in bold red) that can be reached from Hertzallee (shown as a bold red spot) 

without changing mode of transport corresponds to the P-space neighbourhood of that station. 

The implementation (and effect) of an attack differs in different spaces: attacks in 

the L-space correspond to situations, in which given public transport stations and all 

their incident links cease to operate for all means of traffic that go through them, 
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whereas if a station-node is removed in the P-space, the corresponding stop of the 

route is cancelled while the route otherwise keeps operating. The above described 

attacks refer to the removal of nodes. Alternatively, we have analyzed the behaviour 

of PTN when the links are removed [14]. 

With a PTN representation given in the form of a graph we are in the position to 

describe the observables we will be interested in as well as to describe the way attacks 

of different strategies are performed. 

3. Observables and attack strategies 

In practice, the origin of the attack and its scenario may differ to large extent, 

ranging from random failure, when a node or a link in a network is removed at 

random to a targeted destruction, when the most influential network constituents are 

removed according to their operating characteristics [16-18]. Moreover, choosing a 

certain criterion, one can prepare the list of the nodes for the initial network and 

remove the nodes according to this list. Alternatively, one can continuously measure 

nodes (or links) characteristics after each step and modify such a list in the course of 

an attack. Attacks according to recalculated lists often turn out to be more harmful 

than the attack strategies based on the initial list, suggesting that the network structure 

changes as important nodes or links are removed [17,19].  

 One can single out two different impacts to the effectiveness of a network 

and its resilience during an attack. The first one has purely topological origin and is 

uniquely defined by network structure, the second one originates from the load on a 

network (see e.g. [20]), i.e. it takes into account intensity of the transportation 

processes. In the particular case of a PTN this second impact is characterised by the 

number of vehicles or number of passengers that use a given route. In our study we 

will be interested only in the first impact, primary addressing the network topology 

and leaving aside its load. That is, speaking about network robustness to an attack we 

will first of all mean how ‘complete’ remains a PTN when its constituents are 

removed. There are different observables that are usually employed to characterise 

such robustness.  In particular, these are the mean shortest path length l , mean of its 

inverse
1−l , size of the largest component S  [12,13,17,21]. Below, we will exploit 

the last quantity defined as  

,/1 NNS =  (1) 

where N and 1N are numbers of nodes of the network and of its largest component 

correspondingly. In practice, for a finite network, such a quantity serves as an 

analogue of a giant connected component (GCC) which is defined for an infinite 

network only [1]. In turn, the GCC serves as the analogue of a percolation cluster, 

when the problem of network resilience is treated in terms of percolation theory [22].  

 In Fig. 3 we show how S changes as function of the concentration of 

removed nodes c when these nodes are removed randomly without any reference to 
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their characteristics. Below, we will call such scenario a random one and denote it as 

RV (random vertex). The data is displayed for the PTNs of 14 different cities, as 

listed in the corresponding legends. Fig. 3a shows results for the PTN represented as 

a graph in the L-space, whereas Fig. 3b shows data for the P-space. One immediately 

notes that the reaction of the P-space graphs on random attacks is rather homogeneous 

and merely corresponds to continuous linear decrease of )(cS . This is easy to 

understand if one recalls that in the P-space each route enters the PTN representation 

as a complete graph and hence a random removal of any station node does not cause 

network segmentation.  On the contrary, the reaction of the PTN graphs on a random 

attack in the L-space ranges from abrupt breakdown (Dallas) to a slow almost linear 

decrease (Paris).  

 

                 
a.      b. 

 

Fig. 3. The largest cluster size S  of different PTN as function of the fraction of 

removed nodes c . Random scenario. a: L-space,  b: P-space 

 

Before discussing correlations between the characteristics of unperturbed 

PTN and their robustness to attacks let us first explain different attack strategies we 

pursued in our study. In the network literature different attack scenarios are used to 

analyse the resilience of a complex network [12-14,17,19]. Generally, these are based 

on the intuitive assumption that the largest impact on a network is caused by the 

removal of its most important constituents. To quantify such importance of a node, 

one often uses the node degree k (i.e. the number of nearest neighbours of a given 

node), closeness CC , graph GC , stress SC , and betweenness BC centralities (see 

e.g. [23] for definitions and discussion ). To give an example, for a given node j  the 

last quantity is defined as 

,
)(

)( ∑
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=
tjs st

st
B

j
jC

σ

σ
 

(2) 

where )( jstσ   is the number of shortest paths between nodes s  and t  that belong to 

the network Ν  and go through the node j . 

One can also measure the importance of a given node by the number of its 

second nearest neighbours 2z  or its clustering coefficient C . The latter is the ratio of 
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the actual number of links between the node’s nearest neighbours and the maximal 

possible number of mutual links between them. In our analysis we made use of 

different attack scenarios, removing the nodes according to the lists ordered by 

decreasing node degree k , centralities CC , GC , SC , BC , number of second nearest 

neighbours 2z , and increasing clustering coefficient C . Such lists were either 

prepared for an unperturbed network or recalculated after each step of attack. 

Together, this makes sixteen different attack scenarios which including the above 

described random vertex (RV) attack as well as a scenario where a randomly chosen 

neighbour (RN) of a randomly chosen vertex is removed. The last scenario appears to 

be effective for immunization problems [24]. 

 

 

Fig. 4. Largest component size S  of the PTN of Paris as function of  the fraction c  of  

removed nodes  for different attack scenarios. Each curve corresponds to a different scenario as 

indicated in the legend. Lists of removed nodes were prepared according to their degree k , 

closeness CC ,  graph GC , stress SC , and betweenness BC  centralities, clustering 

coefficient C , and next nearest neighbors number 2z . A superscript i refers to lists prepared 

for the initial PTN before the attack. RV and RN denote the removal of a random vertex or of 

its randomly chosen neighbour, respectively 

A typical result of our study is shown in Fig. 4. There, we show changes in the 

largest component size S  of the PTN of Paris as a function of the removed nodes 

fraction c  for the above described attack scenarios. Each curve corresponds to a 

different scenario as indicated in the legend. A similar analysis was performed for all 

other PTN from our database. As expected, it appears that the impact of an attack for 

a given PTN graph crucially depends on the attack scenario. Moreover, the most 

harmful scenarios differ for different graph representations (different ‘spaces’). 

In particular, for the L-space graphs the most harmful scenarios are those defined 

by the node degree, betweenness, closeness and stress centralities, and second nearest 

neighbours number whereas for the P-space graphs the node degree does not play 

such an important role and the most destructive are centrality-oriented scenarios. In 

Fig. 5 we show the size of the largest cluster S  of different PTN graphs in P-space as 

a function of the fraction of removed nodes c  for the recalculated highest 
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betweenness scenario which appears to be the most destructive for the P-space 

graphs. Indeed, the special role played by the highest betweenness nodes is explained 

by the fact, that they join different routes (represented in P-space by separate 

complete graphs) and their removal leads to rapid network segmentation.  

 
Fig. 5. Size of the largest cluster S as a function of the fraction of removed nodes c. 

P-space, highest betweenness scenario (recalculated) 

 

 

From a statistical physics point of view random attack scenarios may be related to 

percolation theory. There, it is well established that site and bond percolation on 

regular lattices show universal behaviour with identical universal exponents, however, 

as has also been shown for percolation on small world networks [25] the percolation 

threshold does in general differ between these two scenarios. One may therefore 

expect similar differences to occur when observing attacks that result in edges being 

removed. Our research on this question is ongoing [14] and we present a first result in 

Fig.6 where the impact of attacks that disable links between node stations in the L-

space representation is shown for all cities in our sample. For each of the PTN it 

appears that randomly removing nodes is more effective than randomly removing 

links. Qualitatively this corresponds to results of [25] where a lower percolation 

threshold (corresponding to a higher sc value) was found for bond percolation. 

To further investigate the origins of the difference in resilience observed we have 

looked for correlations between the observed scale-free behaviour of the degree 

distribution and  the resilience against these attack scenarios. In particular, we 

attempted to fit the node degree distribution to a power-law decay 

γ−kkP ~)( . (3) 

With a good fit and in particular a low exponent γ  indicating strong scale free 

behaviour. 

In the case of the L-space, the scale-free behaviour was markedly observed 

for 7 PTN out of 14, in the P-space these were 4 out of 14. An exponential decay of 

)(kP observed for the other PTN, nevertheless may be fitted by a power law (3) with 

less accuracy. Our findings are that strong scale free behaviour, i.e. good fits with 



8      Bertrand Berche1, Christian von Ferber 2,3, Taras Holovatch 1,2, Yurij Holovatch 4 

small exponents γ is generally correlated with strong resilience, i.e. the network 

breaking down only at a high segmentation concentration. Notable examples are 

given by PTN of Paris ( 62.2=γ ), Saõ Paolo ( 72.2=γ ), and Hong Kong 

( 99.2=γ ). The segmentation concentration for these PTN at the RV scenario is 

30.0;32.0;38.0=sc , respectively. Alternatively, at the same attack scenario PTNs 

of  London ( 48.4=γ ), Los Angeles ( 85.4=γ ), and Dallas ( 49.5=γ ) have 

much lower segmentation concentration: .090.0;130.0;175.0=sc  

 

 
 

Fig. 6. Testing ‘bond percolation’: Size of the largest cluster S as a function of the 

fraction of removed links c. L-space, random scenario. 

 

Another instructive observation concerns the applicability of the Molloy-Reed 

criterion [26] which has been formulated for networks with given node degree 

distribution but otherwise random linking between vertices. For such equilibrium 

networks a GCC was shown to be present if 

,0)2( ≥−kk  (4) 

where angular brackets stand for a network average in the limit of an infinite network 

with given )(kP . Therefore, a GCC is absent for small values of the 

parameter 2/2 <≡ kkκ . Calculating values of κ  for the unperturbed PTN we 

have found that for these real-world networks smaller values of κ  in general indicate 

a smaller segmentation concentration sc  both for the RV and for the recalculated 

node-degree attack scenarios in L-space.  

An analysis of network resilience in P-space on the other hand shows that for 

this particular interpretation of a PTN the mean shortest path length proves to be a 

useful indicator for PTN robustness. With respect to P-space connectivity the path 

lengths are related to the number of times a passenger needs to switch means of 

transport. As our detailed analysis [13] shows, short P-space path lengths indicate a 
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high resilience of a PTN in the otherwise dangerously effective scenario of attacks on 

highest betweenness nodes. 

 

 
 

Fig. 7. Search of the segmentation concentration during an attack scenario, here in the case of 

B-space attacks (see text). From left to right: changes in the mean shortest path length, stress 

and betweenness centralities and size of the main cluster as functions of c  for the highest node 

degree (black curves) and  highest betweenness centrality scenarios for the Berlin PTN 

Complete breakdown occurs for 18 defunct stations. 

To further analyse the way how network resilience may depend on the way 

the network is interpreted we have recently extended our study to include the bipartite 

interpretation of PTN graphs called B-space, see Fig. 1 [14]. In this interpretation, 

both routes and  stations are each represented by a distinct class of nodes. In the 

bipartite graph an edge may only link a node of one class (station)  to a node of the 

other class (route) . Here, each station is linked to all routes servicing it and vice 

versa. A B-space interpretation of an attack on a given station may then be given in 

the following way: if a given station becomes defunct, then all routes servicing it will 

be affected and will stop operation or accumulate serious delays sooner or later. For 

routes operating on tracks this is immediately obvious.  Our preliminary findings are 

that with respect to this realistic interpretation an otherwise seemingly robust network 

may completely break down with only a few defunct stations.  An illustration is given 

for the Berlin PTN in Fig. 7 where a number of network indicators are monitored as 

function of the number of defunct stations. We find that the size of the largest 

component decreases rapidly with a technical breakdown with only 18 defunct 

stations. Obviously, from an operational viewpoint a breakdown would be declared 

even earlier. In a real world scenario this explains how e.g. in the case of industrial 

action a small group of transport union activists may enforce a breakdown by 

blocking only a selection a handful of stations.  

4. Conclusions and outlook 

Public transport networks (PTNs) though sharing many of the known 

features of other complex networks have a particularly rich structure due to their 

underlying multilayer nature. The basic layer of roads or tracks (invisible in our data), 

on top of that the L-space of all roads and tracks that are in use by the routes and 

further on top of these the layer of routes. Both inside and in-between layers different 

networks can be found in terms of graphs defined by node-edge relations starting 

either from a geographical approach (L-space) or a relational one (B-space that offers 

different projections.) 
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In our analysis we attempt to identify correlations between the characteristics 

of the unperturbed PTNs and their robustness to attacks. In particular, we exploit the 

fact [10], that some of the PTNs under consideration manifest scale-free properties. 

Analysing this in more detail, we found that fitting the degree distribution to a power 

law decay allowed us to classify this behaviour in the following way: a network is 

scale free in a ‘strong’ sense if the fit is good and the resulting exponent small, 

otherwise the scale free behaviour is weak or absent. Our analysis has revealed 

significant correlations between the numerical value of the node-degree distribution 

exponent γ and the segmentation concentration of PTN (the last was numerically 

estimated on the base of different methods in [12,13], see also Figs. 6,7 for 

illustration). Our findings show that strong scale free behaviour with a small value of 

γ corresponds to high robustness against various attack scenarios in particular for 

both for the RV and the recalculated node-degree attack scenarios in L-space. 

Making use of a general criterion for the appearance of a giant connected 

component within equilibrium networks we established that the respective ‘Molloy-

Reed’ parameter calculated for the unperturbed network may be employed as an 

estimator of network resilience.  

Comparing with results from exact percolation studies on small-world 

networks [25] we find qualitative agreement with a prediction that bond percolation 

displays lower percolation thresholds that site percolation. 

We have further seen that using other graph interpretations of PTNs leads to 

additional insight into their resilience as a function of their architecture. For the P-

space interpretation which focuses on the number of changes between means of 

transport we have found that short P-space paths generally indicate a high resilience 

of these networks. Particularly striking results are revealed when analysing the 

bipartite graph of the B-space interpretation. Here, we found explanations for the 

effective breakdown of such networks already at very low numbers of defunct 

stations.    

The properties and characteristics of the various representations that we have 

discussed here make this field of PTN research richer than other known complex 

networks. However, we believe that some of the methods and ideas developed here 

may also be useful in other contexts. 
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