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The goals of this paper are to present criteria, that allow to a priori quantify the attack
stability of real world correlated networks of finite size and to check how these criteria
correspond to analytic results available for infinite uncorrelated networks. As a case
study, we consider public transportation networks (PTN) of several major cities of the
world. To analyze their resilience against attacks, either the network nodes or edges
are removed in specific sequences (attack scenarios). During each scenario the size S(c)
of the largest remaining network component is observed as function of the removed
share c of nodes or edges. To quantify the PTN stability with respect to different attack
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scenarios we use the area below the curve described by S(c) for c ∈ [0, 1] recently
introduced (Schneider, C. M. et al. [PNAS 108 (2011) 3838]) as a numerical measure of

network robustness. This measure captures the network reaction over the whole attack
sequence. We present results of the analysis of PTN stability against node and link-
targeted attacks.

Keywords: Complex networks; transportation networks; attack vulnerability.

1. Introduction

Taken the importance of transportation networks in different types of natural and
man-made structures the relevance of their stability against disturbances be they
individual failures or complete breakdown is obvious. In turn, one may single out
two main ingredients which determine this stability, these are (i) dynamical features
of transport processes that take part on such networks, i.e. their fluctuating load and
(ii) structural features of the networks themselves, i.e. their topology [1]. Whereas
a comprehensive treatment of transportation network stability has to deal with
both of these mentioned factors, the complexity of the problem often calls for a
separate account and analysis of each factor. Moreover, recently network structure
stability has become the subject of a separate field of research within complex
network science, where the attack vulnerability of a complex network is treated by
means of a combination of tools of random graph theory [1] and those of percolation
theory [2] and statistical physics [3]. The very notion of attack vulnerability of a
complex network originates from earlier studies of computer networks and reflects
the decrease of network performance as caused by the removal or dysfunction of
either their nodes or links (or both) [4, 5].

The study of network vulnerability against failure or attack has conceptually
much in common with studies of percolation and it gained a lot from concepts
and insights in percolation theory. However, standard percolation theory [2] deals
with homogeneous lattices whereas the nonhomogeneity of complex networks gives
rise to a variety of phenomena which are particular for these structures. To give
an example, the empirical analysis of numerous scale-free real-world networks (the
www and the internet [4, 5], metabolic [6], food web [7], protein [8] networks)
has revealed that these networks display an unexpectedly high degree of robust-
ness under random failure. However, if the scenario is changed toward “targeted”
attacks, the same networks may appear to be especially vulnerable [9, 10]. It is the
nonhomogeneity of networks that allows to choose different attack scenarios, i.e.
to remove network links or nodes not at random, but following specific sequences
prepared according to characteristics determining their “importance”. For vertex-
targeted attacks, the sequence may be ordered by decreasing vertex degree [11, 12]
or betweenness centrality [14] for the unperturbed network and the attack succes-
sively removes vertices according to this original sequence. One may further extend
the above scenarios by recalculating the characteristics of the remaining vertices
after each removal step and reordering the lists [4]. Former analysis has shown that
attacks according to recalculated lists often turn out to be more effective [13, 14].

1250063-2



June 6, 2012 17:3 WSPC/S0219-5259 169-ACS 1250063

Transportation Network Stability: A Case Study of City Transit

So far, the prevailing analytic results on complex network stability have been
obtained for idealized models of infinite networks. In particular, important insight
on network structure stability may be gained assuming that a complex network may
perform its function as long as it possesses a giant connected component (GCC) i.e.
a connected subnetwork which in the limit of an infinite network contains a finite
fraction of the network. Under this assumption, the network robustness may be
judged using the Molloy–Reed criterion, which has been formulated for essentially
tree-like networks with a given node degree distribution P (k) but otherwise random
linking between vertices. The criterion for a GCC to be present in such networks
is [9, 10, 15]:

〈k(k − 2)〉 ≥ 0, (1)

where 〈· · ·〉 means the ensemble average over networks with given P (k). Defining
the Molloy–Reed parameter as the ratio of the moments of the degree distribution

κ(k) = 〈k2〉/〈k〉, (2)

one may rewrite (1) as:

κ(k) ≥ 2. (3)

For an uncorrelated network the parameter κ can be equally represented by the
ratio between the mean number z1 of next neighbors (which is by definition equal
to the mean node degree 〈k〉) and the mean number z2 of second nearest neighbors:

κ(z) = z2/z1. (4)

In terms of κ(z), condition (3) can be rewritten as:

κ(z) ≥ 1. (5)

For obvious reasons, relations (3), (5) cannot be directly applied to real-world
networks, which usually are correlated and are of finite size. Therefore, an important
issue which arises in the analysis of attack vulnerability of real-world networks is
the choice of the observables which may be used to measure network stability. Since
the GCC is well-defined only for an infinite network, often the size of the largest
network component S is used. Alternatively, one can estimate network stability
from the average shortest path lengths or their inverse values [14, 18]. Recently, a
unique measure for robustness was introduced [16, 17] and has been used to devise
a method to restructure a network and to make it more robust against a malicious
attack. Observing the normalized size S(c) of the largest component as function of
the share c of removed vertices or links a measure of stability is provided by the
area A under the curve for the interval c ∈ [0, 1]. We will normalize this value as

A = 100
∫ 1

0

S(c)dc. (6)

Here, the size of the largest component is normalized such that S(0) = 1. In
this respect, the measure captures the network reaction over the whole attack
sequence. The goal of this paper is to elaborate criteria, which allow to give a priori
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information on the attack stability of real world correlated networks of finite size
and to check how these criteria correspond to the analytic results available for the
infinite uncorrelated networks. Note that there are a number of other related prob-
lems not directly touched in our paper, such as restoring the network functioning
after attacks [19] or elaborating techniques to improve network robustness [16, 17]
for which the analysis of network attack resilience is important. As a case study,
we consider public transportation networks (PTN) of several major cities of the
world. This paper continues studies initiated in [18], where we have considered
PTN attack vulnerability. The results presented below complement [18] by describ-
ing the effects of link-targeted attacks as well as by applying the above mentioned
measure for network robustness [16, 17] to evaluate attack efficiency.

For the remaining part of the paper we will use the following set-up. In the
next section we will shortly describe our PTN database, attack scenarios and the
observables used to describe different features of the PTNs considered here. Results
for the transportation network stability against node-targeted and link-targeted
attacks will be given in Secs. 3 and 4, correspondingly. In Sec. 5 we present some
observed correlations between PTN characteristics measured prior to attack and the
PTN stability during attacks following different scenarios. Discussions and outlook
are presented in Sec. 6.

2. Database and Attack Scenarios Description

The systematic analysis of PTNs using tools of complex network theory dates back
to the early 2000s [24] and continues to this day [18, 20–23, 25]. It has been revealed
that these networks share common statistical properties: They appear to be strongly
correlated small-world structures with high values of clustering coefficients and
comparatively low mean shortest path values. The power-law node degree distri-
butions observed for many PTNs give strong evidence of correlations within these
networks.

In this work, we analyze a selection of PTNs drawing from a database compiled
by the present authors earlier and described in [18, 20–23]. The choice for the selec-
tion of these PTNs is motivated by the idea to collect network samples from cities of
different geographical, cultural, and economical background. Some characteristics
of these networks are given in Table 1. For each selected city the available informa-
tion on all different types of public transportation is included. More data as well
as details about the database are given in [18, 23]. As one can see from the table,
the typical number of routes is several hundreds while the typical number of stops
(i.e. network nodes) is several thousands with a mean node degree of 〈k〉 ∼ 3. This
number of network nodes is to be related to comparatively low values for the mean
and maximal shortest path. As mentioned above, the node degree distribution P (k)
for some of the PTNs has been observed [20, 23] to display a power-law decay

P (k) ∼ k−γ , (7)
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Table 1. Some characteristics of the PTNs analyzed in this study. Types of transport taken into

account: Bus, Electric trolleybus, Ferry, Subway, Tram, Urban train; N : number of stations; R:
number of routes. The following characteristics are given: 〈k〉 (mean node degree); �max, 〈�〉
(maximal and mean shortest path length); C (relation of the mean clustering coefficient to that
of the classical random graph of equal size); κ(z), κ(k) [see e.g. Eqs. (4) and (2)); γ (an exponent
in the power-law (7) fit, bracketed values indicate less reliable fits, see the text). More data is
given in [20, 23].

City Type N R 〈k〉 �max 〈�〉 C κ(z) κ(k) γ

Berlin BSTU 2992 211 2.58 68 18.5 52.8 1.96 3.16 (4.30)
Dallas B 5366 117 2.18 156 52.0 55.0 1.28 2.35 5.49
Düsseldorf BST 1494 124 2.57 48 12.5 24.4 1.96 3.16 3.76
Hamburg BFSTU 8084 708 2.65 156 39.7 254.7 1.85 3.26 (4.74)
Hong Kong B 2024 321 3.59 60 11.0 60.3 3.24 5.34 (2.99)
Istanbul BST 4043 414 2.30 131 29.7 41.0 1.54 2.69 4.04
London BST 10937 922 2.60 107 26.5 320.6 1.87 3.22 4.48
Moscow BEST 3569 679 3.32 27 7.0 127.4 6.25 7.91 (3.22)
Paris BS 3728 251 3.73 28 6.4 78.5 5.32 6.93 2.62
Rome BT 3961 681 2.95 87 26.4 163.4 2.02 3.67 (3.95)
Saõ Paolo B 7215 997 3.21 33 10.3 268.0 4.17 5.95 2.72
Sydney B 1978 596 3.33 34 12.3 82.9 2.54 4.37 (4.03)
Taipei B 5311 389 3.12 74 20.9 186.2 2.42 4.02 (3.74)

for large values of the node degree k. Results for the corresponding exponent values
are given in the last column of Table 1. If the distribution P (k) is better fitted by an
exponential decay, the exponent corresponding to a power-law fit is given in brackets
(this is the case for seven out of thirteen listed PTNs). As a measure of local network
correlation we give the mean clustering coefficient of each PTN normalized by the
value CER for an Erdos–Renyi random graph with the same numbers of nodes N

and links M , CER = 2M/N2. Recall that the clustering coefficient C(i) of a given
node (i) is the ratio of the number of links Ei between the ki nearest neighbours of
node (i) and the maximal possible number of mutual links between these:

C(i) =
2Ei

ki(ki − 1)
. (8)

The values of C quoted in Table 1 give convincing evidence for the presence of
strong local correlations.

In our earlier work on the PTN resilience to attacks of different types we intro-
duced different scenarios to remove network nodes or links, to model random failure
or attack. In particular, the nodes were removed according to lists prepared in the
order of decreasing (i) node degrees, (ii–v) the so-called closeness, graph, stress,
and betweenness centralities (see e.g. [26] for definitions), (vi) the number of their
second nearest neighbors, (vii) their increasing clustering coefficient. These scenar-
ios were either implemented according to lists prepared for the initial PTN before
the attacks or by lists rebuilt by recalculating the order of the remaining nodes
after each step. Together, this leads to fourteen different attack scenarios. In addi-
tion, two random scenarios were considered: removing the nodes at random and
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removing a randomly chosen neighbor of a randomly chosen node. The latter sce-
nario appears to be effective for immunization problems [27] and it is based on the
fact, that in this way nodes with a high number of neighbors will be selected with
higher probability. However, the focus of this previous work was primarily on node-
targeted attacks. In previous work [18, 21, 22], the present authors have shown that
for PTNs the most effective attack scenarios out of those listed above correspond
to removing nodes (i) either with highest degree ki or with highest betweenness
centrality values CB(i). For a given node (i), the latter quantity is defined as:

CB(i) =
∑

j �=i�=k

σjk(i)
σjk

, (9)

where σjk is the number of shortest paths between nodes j and k and σjk(i) is the
number of these paths that go via node (i).

The results presented below show the outcome of node- and link-targeted
attacks, where either nodes or links are removed following specific sequences cor-
responding to so-called scenarios. For node-targeted attacks we concentrate on five
different scenarios, by selecting the nodes: (i) at random, (ii) according to their
initial degree (prior to the attack) (iii) according to their degree recalculated after
nodes of higher degree have been removed (iv) according to their initial betweenness
centrality (v) according to their recalculated betweenness centrality. The same five
scenarios are implemented for the link-targeted attacks. However, in this case one
has to generalize the notions of node degree and betweenness centrality for links.
We will define the degree k(l) of the link between nodes i and j with degrees ki and
kj as:

k
(l)
ij = ki + kj − 2. (10)

For the simple graph with two vertices and a single link, the link degree will be
zero, k(l) = 0, while for any link in a connected graph with more than two vertices
the link degree will be at least one, k(l) ≥ 1. The link betweenness centrality C(l)

B (i)
measures the importance of a link i with respect to the connectivity between the
nodes of the network. The link betweenness centrality is defined as

C(l)
B (i) =

∑
s�=t∈N

σst(i)
σst

, (11)

where σst is the number of shortest paths between the two nodes s, t ∈ N , that
belong to the network N , and σst(i) is the number of shortest paths between nodes
s and t that go through the link i.

The two subsequent sections demonstrate how PTNs react on attacks of the
above described scenarios when these attacks are targeted on PTN nodes (Sec. 3)
and links (Sec. 4). To quantify the outcome of these attacks we monitor the evolution
of the normalized size S(c) of the largest network component as function of the share
c (with 0 ≤ c ≤ 1) of removed links or nodes:

S(c) = N(c)/N(0), (12)
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where N(0) is the initial number of nodes of the largest connected component while
N(c) is the corresponding remaining number of nodes in that component after a
share c of nodes or links has been removed. Obviously, any network of nonzero size
will have a largest connected component.

As already mentioned earlier, different measures can be used to quantify the
attack outcome and to control network stability. As we have already checked in
our previous studies [20–23] the choice of the S(c), Eq. (12), provides the most
convenient measure for the PTN. Alternative choices e.g. of monitoring the longest
or mean shortest paths lengths have obvious flaws. For example when monitoring
the longest shortest path a cusp is observed near network breakdown as longer
deviations need to be taken to move between nodes. However, usually either more
than one such cusp appears or no visible cusp appears at all. In both cases no
unique breakdown point may be found [21]. Further the procedure is ill-defined on
disconnected networks [14, 20]. To some extent another variant, based on the mean
inverse shortest path length as the control parameter [20] mends the latter problem
and generally produces results that are in a good agreement with those presented
below.

3. Node-Targeted Attacks

The outcome of attacks targeting PTNs nodes has been reported by the present
authors in [18, 21, 22]. In particular, results of attacks of sixteen different scenar-
ios have been presented and the most effective ones were singled out. Here, we
recall the results of the five scenarios laid out in the previous section. In partic-
ular, this will allow to compare these with the corresponding link-targeted attack
scenarios (Sec. 4) and analyzing these to elaborate criteria for network stability
(Sec. 5).

In Fig. 1 we show the dependence of the normalized size S(c) (12) of the largest
connected cluster as function of the share c of removed PTN nodes for two attack
scenarios: in the first one, Fig. 1(a) the PTN nodes are removed at random, in the
second one, Fig. 1(b) the nodes are removed according to the a list of the nodes
ordered by their node degree k recalculated after each step comprising the removal
of 1% of the initial nodes. In the following, we will call this scenario the “recal-
culated node degree scenario”. As noted, instead of recalculating the PTN char-
acteristics after the removal of each individual node, the nodes are removed in
groups of 1% of the initial nodes and the PTN characteristics are recalculated after
the removal of each such group. The random scenario Fig. 1(a) presents results
of a single instance of an attack, we have verified, however, that due to the large
size of the PTNs a certain “self-averaging” effect takes place: averaging of S(c)
over many random attack sequences instances does not significantly modify the
picture for S(c) presented in Fig. 1(a). As one may infer from the figures, the
individual PTNs may react on the attacks in very different way, ranging from a
gradual decrease of S(c) as function of c to sudden jumps at certain values of c.
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Fig. 1. Size of the largest cluster S as functions of a fraction of removed nodes c normalized by
their values at c = 0. (a) For random node-targeted scenario. (b) For recalculated node-degree
attack scenario.

A further striking feature of the plots visualising these scenarios is the qualita-
tive differences seen between individual PTNs as well as between different attack
scenarios.

To further illustrate the reaction of a given PTN to attacks of different type,
we present in Fig. 2 the changes in the largest component size of the PTNs of
Dallas [Fig. 2(a)] and Paris [Fig. 2(b)] for attacks of five different scenarios, as
described in the former section [20]. For the case of the Paris PTN we observe that
for small values of the share c of removed nodes (c < 7%) these scenarios cause
practically indistinguishable impact on S(c) and S(c) is a linear function of c. As
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Fig. 2. The normalized largest component size S(c) of the PTN as function of the fraction c
of removed nodes for different attack scenarios. Each curve corresponds to a different scenario
defined by a corresponding sequence of nodes. RV: random vertex sequence; k and ki: sequences
ordered by recalculated and initial degrees; CB and Ci

B : sequences ordered by recalculated and
initial betweenness. (a) Five scenarios for the PTN of Dallas. (b) Five scenarios for the PTN of
Paris.

1250063-8



June 6, 2012 17:3 WSPC/S0219-5259 169-ACS 1250063

Transportation Network Stability: A Case Study of City Transit

c increases, deviations from the linear behavior arise and the impact of different
scenarios starts to vary. In particular, there appear differences between the roles
played by the nodes with highest value of k and highest betweenness centrality CB.
Whereas the first quantity is a local one, i.e. it is calculated from properties of
the immediate environment of each node, the second one is global. Moreover, the
k-based strategy aims to remove a maximal number of edges whereas the CB-based
strategy aims to cut as many shortest paths as possible. In addition, there arise
differences between the “initial” and “recalculated” scenarios, suggesting that the
network structure changes as important nodes are removed. Similar behavior of
S(c) is observed for all PTNs included in this study, while the order of effectiveness
of different attack scenarios may differ between PTNs.

4. Link-Targeted Attacks

A particular feature of link-targeted attacks is that when a link is removed, the
neighbouring nodes survive. Therefore, during the link-targeted attacks all the
nodes survive to the end of an attack, i.e. the number of nodes does not change,
while the share of the removed links increases. In Figs. 3 and 4 we monitor the
behavior of the normalized size S(c) for the largest connected component (12) but
now as a function of the removed links following corresponding link-attack scenar-
ios. Besides removing links at random we will use the sequences ordered according
to link degree and link betweenness centrality, (10), (11) either calculated for the
initial unperturbed PTN (we will indicate the corresponding scenario by a super-
script i, e.g. Ci,(l)

B ) or following sequences with lists recalculated for the remaining
links after each step of removing 1% of the initial set of links.

In Fig. 3(a) we show the change of the normalized size S(c) of the largest
cluster under random link-targeted attacks (RL). If one compares this behavior
with that observed for the random node removal scenario (RV) [see Fig. 1(a)] one
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Fig. 3. The normalized size S(c) of the largest cluster as functions of the share of removed links
for the PTNs of 13 cities. (a) Random link-targeted scenario. (b) Recalculated link-degree attack
scenario.
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Fig. 4. Normalized size S(c) of the largest component of the PTN as function of the share c
of removed links for different attack scenarios. Each curve corresponds to a different scenario as
indicated in the legend. Lists of removed links were prepared according to their degree k(l) and
betweenness CB(l) centrality. A superscript i refers to lists prepared for the initial PTN before the
attack; RL and RV denote the removal of a random link and removal of random node respectively.
(a) For PTN of Dallas. (b) For PTN of Paris.

can see, that for most PTNs with strong resilience to random node-targeted attacks
random link removal is even less effective. On the other hand, for PTN with weak
resilience there seems to be no significant difference. Similar to the random node
attacks (RV) scenarios the random link attacks (RL) lead to changes of the largest
connected component S that range from an abrupt breakdown (Dallas) to a slow
smooth decrease (Paris). The decay is even slower than for random node removal —
removing a link does not necessary lead to removing a node from the largest cluster,
while removing a node from the completely connected network decreases it at least
by one node.

Typical results for PTNs under different types of link-targeted attacks as applied
to the PTNs of Dallas and Paris are displayed in Fig. 4. We show how the normalized
size S(c) of the largest connected component of the Dallas (a) and Paris (b) PTN
varies as function of the share c of removed links following the above described
attack scenarios. As one can see, there is no significant difference between the
effectiveness of most scenarios including the random one for the PTN of Dallas.
The vulnerability behavior of the Dallas PTN under link-targeted attacks appears
not to differ from the corresponding random vertex removal approach. For Paris the
situation is quite different. The main observation is that initially the random vertex
attack is more effective than any link-targeted attack, until breakdown and further,
and only once the near to 50% of the links have been removed the recalculated link
degree (k(l)) targeted scenario starts to be more harmful. Comparing different link-
targeted scenarios one notices similar behavior between these, only the recalculated
degree scenario line initially decays slower, however to become more effective near
to the breakdown. In the following section we will compare outcomes of node- and
link-targeted attacks in more detail.
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The special behavior of the recalculated link degree behavior may be explained
as follows: in each removal step the links with highest link degrees are removed,
However, these may belong to a number of different nodes. The affected nodes will
therefore remain, however, with lower degrees. After recalculation the links on these
nodes affected in the last step will have moved to lower places in the ordered list
such that other links will be affected. This will continue until the degrees of all
nodes have been reduced to three or less. At that point the removal of almost any
link will cut down the connected component and a rapid breakdown of the largest
component takes place.

When the sequence for the removal of links is calculated using the initial degrees
of the vertices, then obviously in the first 1% step a set of all links connected to the
highest degree vertices are removed which is approximately equivalent to removing
the corresponding 1% of all highest degree nodes. As far as no recalculation is
involved the second step will essentially cut the links off the second 1% of highest
degree nodes. Disregarding correlations between these operations one may therefore
expect that the initial link and node degree scenarios result in similar breakdown
behavior.

5. Robustness Measures and Correlations

As it was mentioned in the Introduction, different indicators may be used in order
to evaluate network stability. Here, for this purpose we will use a measure, recently
introduced in [16, 17]. In our case, this measure corresponds to the area below the
curve describing the normalized size S(c) as function of the share c of removed
links, as defined by Eq. (6). As follows from the definition, the measure captures
the effects on the network over the complete attack sequence. It is especially useful
in the analysis of the real-world networks which are of finite size and usually are not
characterized by a single well-defined concentration at which phenomena analogous
to percolation (network clustering) occurs. Instead, the value A is an integral char-
acteristics, which is well-defined for a finite-size network and is, as we will see below,
nicely suited to compare robustness of different PTNs during attacks. In Table 2 we
give the value of A for the node- and link-targeted attacks (left and right parts of
the table, correspondingly). Columns marked as RV (RL) give A for the attacks at
which nodes (links) were chosen at random, these numbers can be compared with
the outcome of attacks made according to the initially prepared sequences of nodes
(links) ordered by decreasing degrees (ki, ki,(l)) and betweenness centralities (Ci

B,
Ci,(l)

B ). For the last four scenarios these indicators were recalculated after each step
of the attack, and the corresponding results are given in columns marked as k, k(l)

and CB, C(l)
B .

With the data of Table 2 at hand, it is easy to compare the robustness of a
given PTN to attacks of different scenarios as well as to compare the robustness
of different PTNs. Assuming that the most stable PTNs are those characterized
by larger values of A one may conclude from the table, that for the node-targeted
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Table 2. Robustness measure A, Eq. (6), for the PTNs of different cities as analyzed in this
study. Columns 2–6 give the value of A for node-targeted attacks, columns 7–11 give A for link–
targeted attacks. The results for A for the following attack scenarios are reported — RV: random
node; k: node with maximal recalculated degree; ki: node with maximal initial degree; CB : node
with maximal recalculated betweenness centrality; Ci

B : node with maximal initial betweenness

centrality; RL: random link; k(l): link with recalculated maximal degree; ki,(l): link with maximal

initial degree; C(l)
B : link with maximal recalculated betweenness; Ci,(l)

B : link with maximal initial
betweenness.

City Node-targeted attacks Link-targeted attacks

RV k ki CB Ci
B RL k(l) ki,(l) C(l)

B Ci,(l)
B

Berlin 22.71 6.52 7.12 7.27 9.44 31.21 22.27 25.57 29.91 30.92
Dallas 9.81 3.41 3.61 6.07 13.28 11.17 8.94 10.68 11.75 19.58
Düesseldorf 25.47 7.45 9.39 8.26 12.65 31.22 23.88 28.69 30.58 31.44
Hamburg 15.82 6.34 6.99 6.53 12.19 20.74 22.49 24.02 20.22 20.47
Hong Kong 31.57 9.99 9.78 6.1 15.0 47.55 41.41 40.17 47.08 34.13
Istanbul 16.05 4.46 5.03 5.62 9.42 18.45 13.13 15.1 19.78 18.86
London 29.31 5.45 6.28 8.71 14.17 27.45 20.95 22.85 27.2 27.33
Moscow 34.61 8.02 8.37 7.82 11.63 51.18 38.99 41.96 50.68 41.58
Paris 37.93 10.77 13.12 10.67 14.07 56.04 47.12 51.83 55.93 48.03
Rome 22.26 6.61 7.68 7.05 14.81 32.52 29.2 27.8 33.99 30.13
Sãopaolo 32.4 4.43 4.59 5.22 6.23 47.09 33.19 32.08 47.46 33.85
Sydney 32.15 8.74 9.49 6.61 18.53 46.45 37.26 35.74 49.14 26.15
Taipei 27.59 10.92 13.55 11.71 20.31 39.35 36.03 40.41 38.21 35.37

attacks the most harmful appear to be attacks targeted either on the nodes of
highest degree (PTN of Berlin, Dallas, Düsseldorf, Hamburg, Istanbul, London,
Rome, Saõpaolo, and Taipei) or on the nodes of highest betweenness centrality
(Hong Kong, Moscow, Paris, Sydney). Another observation is that attacks per-
formed according to the lists of nodes recalculated after each step of the attack
scenario appear to be more effective than those performed according to the lists
prepared prior to the attack. Moreover, this difference is much more pronounced for
the highest betweenness centrality targeted nodes as for those with highest node
degree.

On the other hand, for link-targeted attacks the most effective appear to be the
highest link degree targeted attacks according to the recalculated (PTN of Berlin,
Dallas, Düsseldorf, Istanbul, London, Moscow, Paris) or initial (Rome, Saõpaolo)
lists of links. Only for the PTN of Hamburg, Hong Kong, Taipei, and Sydney the
highest betweenness centrality scenario appears to be the most effective, however
even in this case the difference between different scenarios is not much pronounced.
This similarity in behavior for “initial” and “recalculated” scenarios seems to be an
intrinsic feature of the link-targeted attacks. Moreover, as we noticed before, some-
times the “initial” approach occurs to be more effective. It is interesting to mention
that for three PTN (Hong Kong, Sydney, Taipei) which are not very resilient against
any kind of attacks (however not for PTN of Dallas, which is least), most efficient
is the scenario of removing links with initial highest values of the betweenness
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centrality Ci,(l)
B . It is worthwhile to note here, that the order of the PTNs according

to their vulnerability under link-targeted attacks is similar to that for the node-
targeted scenarios, there are just few light shifts.

To further shed light on correlation between the network characteristics prior to
the attack and their stability during the attack we check correlation of A, Eq. (6), for
all PTNs out of our database at different attack scenarios (Table 2) with the value
of the Molloy–Reed parameters κ(k), Eq. (2), and κ(z), Eq. (4) of the unperturbed
networks, as given in Table 1. The results are displayed in Fig. 5. There we show the
value of A correlated with the Molloy–Reed parameters κ(z) (filled circles), and κ(k)

(open circles) of the same network for the node- and link-targeted attacks (left and
right columns, correspondingly). One notices two different regimes in the behavior of
the relation between A and κ for random and recalculated highest degree scenarios
both for node- and link-targeted attacks. First, A rapidly increases with an increase
of κ, then, in the second regime, when κ exceeds certain “marginal” value, there is
no pronounced correlation between A and κ any more, however still a weak increase
of A with κ is observed. These two regimes are observed both in A(κ(z)) and A(κ(k))
functions, however the behavior is more pronounced in A(κ(z)) plots (filled circles).
We show the linear fits for both regimes by solid lines in the figures. The region of
κ where the first regime is observed is 1 � κ(z) � 2 (2 � κ(k) � 4). Thus, if two
PTNs have initial values of corresponding Molloy–Reed parameters in this region,
it is very probable, that the PTN with higher value of κ will be essentially more
stable than the PTN with lower value of κ. However, the PTNs with the Molloy
Reed parameters κ(z) > 2 (κ(k) > 4) although in general being more stable than
those with lower κ do not differ substantially in their stability. A similar bahaviour
is observed for the link-targeted highest betweenness centrality attacks [Fig. 5(f)]
but it is less pronounced, even less pronounced it is for the node-targeted highest
betweenness centrality attacks [Fig. 5(e)], where almost no correlation between A

and κ is observed. To understand the origin of the particular sensitivity of PTN
stability for small values of κ, let us recall the results for uncorrelated networks
(see formulas (3), (5) and references in the text): a GCC in an infinite network can
exist only if κ exceeds the marginal value of κ(z) = 1 (κ(k) = 2). In the vicinity
of this marginal value the network is especially sensitive to even slight changes.
Obviously, the finiteness of the PTN and the correlation effects present there lead
to a variation for the criteria (3), (5), however a general sensitivity of network
stability to the changes in κ for small κ remains.

Another interesting observation is illustrated by Fig. 6. There, we show the
correlation of A with the mean node degree 〈k〉 for the random (a, b), recalculated
degree (c, d) and recalculated betweenness (e, f) scenarios. A generic feature of the
A(〈k〉) plots is the linear increase of A with increasing of 〈k〉 which is observed
for all values of 〈k〉 and for all three scenarios. A similar increase is observed both
for the node- and link-targeted attacks, see e.g. Figs. 6(a) and 6(c) and Figs. 6(b)
and 6(d), however the linear approximation holds for the node-targeted attacks
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Fig. 5. Attacks on nodes (left column) and on links (right column). Correlation between A and κ
for the random (a, b), recalculated node degree (c, d) and recalculated betweenness (e, f) scenarios.
Results for κ(z) are shown by filled circles, results for κ(k) are shown by open circles. Solid lines
show linear fits of the corresponding data points.

1250063-14



June 6, 2012 17:3 WSPC/S0219-5259 169-ACS 1250063

Transportation Network Stability: A Case Study of City Transit

0

0.1

0.2

0.3

0.4

2 3 4

A

<k>

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4

A

<k>

(a) (b)

0

0.1

2 3 4

A

<k>

0

0.1

0.2

0.3

0.4

0.5

2 3 4

A

<k>

(c) (d)

0

0.1

2 3 4

A

<k>

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4

A

<k>

(e) (f)

Fig. 6. Results of node targeted attacks (left column) and link targeted attacks (right column).
Correlation between A and 〈k〉 for (a, b) the random, (c, d) the recalculated degree and (e, f) the
recalculated betweenness scenarios.
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with less accuracy and is almost useless for the highest betweenness centrality plots,
Fig. 6(e). The corresponding fits are shown by solid lines in the figures. The plots
of Fig. 6 demonstrate correlation of the network stability with the initial “density”
of network constituents, nodes or links, without relation to the correlations in the
PTN structure. This is different to the plots of Fig. 5, where the correlations where
considered by analyzing the second moment of the node degree distribution 〈k2〉,
that enters the Molloy–Reed parameter. Therefore, Fig. 6 shows the correlation
of the network stability measure A with the mean node degree, 〈k〉. There, for
both cases, within the expected scatter of data one observes clear evidence of an
increase of A with 〈k〉, i.e. networks with smaller mean node degree 〈k〉 break down
at smaller values of c and are thus more vulnerable to the attacks. Again, this
observation holds for the link-targeted attacks as well for the node-targeted attack
of random and recalculated highest degree scenarios.

For the node-targeted attacks on scale-free networks it is useful also to check the
correlation between the node degree distribution exponent γ, Eq. (7) and the stabil-
ity measure A. Analytic results for infinite scale-free networks as well as empirical
observations for numerous real-world scale-free networks have confirmed a particu-
lar stability of scale-free networks: there is no percolation threshold for exponents
γ ≤ 3 [9, 10]. As we have observed in the previous studies [20] some of the PTNs
under consideration are scale-free: their node-degree distributions have been fitted
to a power-law decay (7) with the exponents shown in Table 1. Others are char-
acterized rather by an exponential decay, but up to a certain accuracy they can
also be approximated by a power-law behavior (then, the corresponding exponent
is shown in Table 1 in brackets). In Figs. 7(a) and 7(b) we show the correlation
between the fitted node-degree distribution exponent γ and A for the random and
recalculated node degree scenarios. One observes a notable tendency to find PTNs
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Fig. 7. Results of node targeted attacks. Correlation of A with respect to γ for (a) the random
and (b) the recalculated node degree scenarios. Filled circles correspond to the PTNs with more

pronounced power-law decay of the node-degree distribution, open circles correspond to the PTNs
where the power-law decay is less pronounced (see the Sec. 2).
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with smaller values of γ to be more resilient as indicated by larger values of A.
This tendency holds even if we include the PTNs which are better described by the
exponential decay of the node-degree distributions.

6. Conclusions and Outlook

In this paper we have presented an empirical analysis of the reaction of PTNs
of different cities of the world upon random failure or directed attack scenarios.
There may be numerous reasons for individual failure, ranging from a random
accident to a targeted destruction. However, in accumulation these may lead to an
emergent behavior as a result of which the PTN ceases to function. On the one
hand our analysis is motivated by practical interest in the stability of individual
PTNs thereby comparing the operating features of different PTNs. On the other
hand we were seeking to identify criteria, which allow to judge a priori on the attack
stability of real world correlated networks of finite size checking how do these criteria
correspond to the analytic results available for the infinite uncorrelated networks.

To perform the present analysis, we have used previously accumulated [20] data
on PTNs of several major cities of the world (see Table 1) and simulated attacks of
different scenarios targeted on the PTN nodes and links. To quantify the PTN sta-
bility to attacks of different scenarios we use a recently introduced [16, 17] numerical
measure of network robustness. Note that this measure provides a good alternative
to formerly exploited measures such as maximal, and mean shortest paths lengths
or their inverse and, as we show in particular in this study may serve as a reliable
way to monitor network stability under attack. In our case, this measure is defined
as the area below curve described by the normalized size S(c) of the largest con-
nected component as function of the share c of removed nodes. In this respect, the
measure captures the overall resilient behavior over the complete attack sequence.
Table 2 allows to compare the robustness of a given PTN to attacks of different
scenarios as well as to compare the relative robustness of different PTNs.

The comparison of PTN characteristics measured prior to the attack with the
PTN robustness monitoring its behavior during the attack allowed us to propose
criteria that allow an a priori estimate of PTN robustness and stability with respect
to an attack. This stability is indicated by a high value of the Molloy–Reed param-
eters κ(k), Eq. (2), and κ(z), Eq. (4) as well as by the high value of the mean node
degree 〈k〉 of the unperturbed networks. Moreover, if the PTN node degree distri-
bution manifests a power-law decay, we have observed a notable tendency to find
PTNs with smaller values of γ to be more stable.

In a concluding note let us emphasize that the attack scenarios considered here
are based on eliminating single nodes or links according to their centrality properties
within the network. One may speculate that further optimization scenario could be
constructed by choosing specific sets of links or nodes or even combinations of
these. Finding an “optimal” strategy in terms of a minimal set of links and nodes
such that on their removal would induce a breakdown of the network is however a
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non-polynomial problem. This is essentially of the order of the binomial coefficient
CN+M

n+m for N nodes, M links of the full network and n + m the sum of numbers
of removed links and nodes. In our case N + M is of the order of several 1000s
to 100,000s and the amount to “break” the network is known to be of the order
of 5%–10% at least. Therefore finding an “optimal” strategy not relying on some
centrality information is computationally out of reach.
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